Villification: How the Gut Gets Its Villi
The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We find that these steps of vilification depend on the sequential differentiation...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-10, Vol.342 (6155), p.212-218 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 6155 |
container_start_page | 212 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 342 |
creator | Shyer, Amy E. Tallinen, Tuomas Nerurkar, Nandan L. Wei, Zhiyan Gil, Eun Seok Kaplan, David L. Tabin, Clifford J. Mahadevan, L. |
description | The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We find that these steps of vilification depend on the sequential differentiation of the distinct smooth muscle layers of the girt, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. A quantitative computational model, incorporating measured properties of the developing gut recapitulates the morphological patterns seen during villification in a variety of species. These results provide a mechanistic understanding of the formation of these elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption. |
doi_str_mv | 10.1126/science.1238842 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4045245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42619819</jstor_id><sourcerecordid>42619819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-e7ebf3950a8543455d08c82d8f88f7a021f3cc0b4f5a4d754350a4de12a2c9703</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTsyel4EUP3V5-tYkHQUS3wcCLeg1ZmmpG12jTKv73RjeHevEQcnif9-C9L0KHGIYYk2wUjLO1sUNMqBCMbKE-BslTSYBuoz4AzVIBOe-hvRAWALEm6S7qESqFlJz30dmDqypXOqNb5-vzZOLfkvbJJuOuTca2Dck0vi-zj3ZKXQV7sP4H6P7m-u5qks5ux9Ory1lqeM7b1OZ2XlLJQQvOKOO8AGEEKUQpRJlrILikxsCclVyzIo8mUlZYTDQxMgc6QBeruc_dfGkLY-u20ZV6btxSN-_Ka6d-V2r3pB79q2LAOGE8DjhdD2j8S2dDq5YuGFtVura-C4rEOzDAnNB_KRYggGdZLv6nLG4LmaRZpCd_6MJ3TR2P9qkwERjHGAZotFKm8SE0ttysiEF9hqvW4ap1uLHj-OdlNv47zQiOVmARWt9s6oxkWAos6QcF1afq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441281159</pqid></control><display><type>article</type><title>Villification: How the Gut Gets Its Villi</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Shyer, Amy E. ; Tallinen, Tuomas ; Nerurkar, Nandan L. ; Wei, Zhiyan ; Gil, Eun Seok ; Kaplan, David L. ; Tabin, Clifford J. ; Mahadevan, L.</creator><creatorcontrib>Shyer, Amy E. ; Tallinen, Tuomas ; Nerurkar, Nandan L. ; Wei, Zhiyan ; Gil, Eun Seok ; Kaplan, David L. ; Tabin, Clifford J. ; Mahadevan, L.</creatorcontrib><description>The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We find that these steps of vilification depend on the sequential differentiation of the distinct smooth muscle layers of the girt, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. A quantitative computational model, incorporating measured properties of the developing gut recapitulates the morphological patterns seen during villification in a variety of species. These results provide a mechanistic understanding of the formation of these elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1238842</identifier><identifier>PMID: 23989955</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Absorption ; Animals ; Buckling ; Chick Embryo ; Chicks ; Circles ; Circumferences ; Compressive properties ; Developmental biology ; Diameters ; digestive system ; Endoderm ; Endoderm - growth & development ; Folding ; Gastrointestinal Tract - embryology ; Gastrointestinal Tract - ultrastructure ; Humans ; Individualized Instruction ; Large intestine ; Lumens ; Mesoderm - growth & development ; Mice ; Models, Biological ; Morphogenesis ; Muscle, Smooth - embryology ; Muscles ; Progressions ; RESEARCH ARTICLE ; Ridges ; Scientific Concepts ; Simulations ; Small intestine ; Smooth muscle ; Surface area ; Tissues ; Villi ; Xenopus</subject><ispartof>Science (American Association for the Advancement of Science), 2013-10, Vol.342 (6155), p.212-218</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-e7ebf3950a8543455d08c82d8f88f7a021f3cc0b4f5a4d754350a4de12a2c9703</citedby><cites>FETCH-LOGICAL-c575t-e7ebf3950a8543455d08c82d8f88f7a021f3cc0b4f5a4d754350a4de12a2c9703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42619819$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42619819$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,2871,2872,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23989955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shyer, Amy E.</creatorcontrib><creatorcontrib>Tallinen, Tuomas</creatorcontrib><creatorcontrib>Nerurkar, Nandan L.</creatorcontrib><creatorcontrib>Wei, Zhiyan</creatorcontrib><creatorcontrib>Gil, Eun Seok</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Tabin, Clifford J.</creatorcontrib><creatorcontrib>Mahadevan, L.</creatorcontrib><title>Villification: How the Gut Gets Its Villi</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We find that these steps of vilification depend on the sequential differentiation of the distinct smooth muscle layers of the girt, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. A quantitative computational model, incorporating measured properties of the developing gut recapitulates the morphological patterns seen during villification in a variety of species. These results provide a mechanistic understanding of the formation of these elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption.</description><subject>Absorption</subject><subject>Animals</subject><subject>Buckling</subject><subject>Chick Embryo</subject><subject>Chicks</subject><subject>Circles</subject><subject>Circumferences</subject><subject>Compressive properties</subject><subject>Developmental biology</subject><subject>Diameters</subject><subject>digestive system</subject><subject>Endoderm</subject><subject>Endoderm - growth & development</subject><subject>Folding</subject><subject>Gastrointestinal Tract - embryology</subject><subject>Gastrointestinal Tract - ultrastructure</subject><subject>Humans</subject><subject>Individualized Instruction</subject><subject>Large intestine</subject><subject>Lumens</subject><subject>Mesoderm - growth & development</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Muscle, Smooth - embryology</subject><subject>Muscles</subject><subject>Progressions</subject><subject>RESEARCH ARTICLE</subject><subject>Ridges</subject><subject>Scientific Concepts</subject><subject>Simulations</subject><subject>Small intestine</subject><subject>Smooth muscle</subject><subject>Surface area</subject><subject>Tissues</subject><subject>Villi</subject><subject>Xenopus</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgipvTsyel4EUP3V5-tYkHQUS3wcCLeg1ZmmpG12jTKv73RjeHevEQcnif9-C9L0KHGIYYk2wUjLO1sUNMqBCMbKE-BslTSYBuoz4AzVIBOe-hvRAWALEm6S7qESqFlJz30dmDqypXOqNb5-vzZOLfkvbJJuOuTca2Dck0vi-zj3ZKXQV7sP4H6P7m-u5qks5ux9Ory1lqeM7b1OZ2XlLJQQvOKOO8AGEEKUQpRJlrILikxsCclVyzIo8mUlZYTDQxMgc6QBeruc_dfGkLY-u20ZV6btxSN-_Ka6d-V2r3pB79q2LAOGE8DjhdD2j8S2dDq5YuGFtVura-C4rEOzDAnNB_KRYggGdZLv6nLG4LmaRZpCd_6MJ3TR2P9qkwERjHGAZotFKm8SE0ttysiEF9hqvW4ap1uLHj-OdlNv47zQiOVmARWt9s6oxkWAos6QcF1afq</recordid><startdate>20131011</startdate><enddate>20131011</enddate><creator>Shyer, Amy E.</creator><creator>Tallinen, Tuomas</creator><creator>Nerurkar, Nandan L.</creator><creator>Wei, Zhiyan</creator><creator>Gil, Eun Seok</creator><creator>Kaplan, David L.</creator><creator>Tabin, Clifford J.</creator><creator>Mahadevan, L.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131011</creationdate><title>Villification: How the Gut Gets Its Villi</title><author>Shyer, Amy E. ; Tallinen, Tuomas ; Nerurkar, Nandan L. ; Wei, Zhiyan ; Gil, Eun Seok ; Kaplan, David L. ; Tabin, Clifford J. ; Mahadevan, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-e7ebf3950a8543455d08c82d8f88f7a021f3cc0b4f5a4d754350a4de12a2c9703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Buckling</topic><topic>Chick Embryo</topic><topic>Chicks</topic><topic>Circles</topic><topic>Circumferences</topic><topic>Compressive properties</topic><topic>Developmental biology</topic><topic>Diameters</topic><topic>digestive system</topic><topic>Endoderm</topic><topic>Endoderm - growth & development</topic><topic>Folding</topic><topic>Gastrointestinal Tract - embryology</topic><topic>Gastrointestinal Tract - ultrastructure</topic><topic>Humans</topic><topic>Individualized Instruction</topic><topic>Large intestine</topic><topic>Lumens</topic><topic>Mesoderm - growth & development</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Muscle, Smooth - embryology</topic><topic>Muscles</topic><topic>Progressions</topic><topic>RESEARCH ARTICLE</topic><topic>Ridges</topic><topic>Scientific Concepts</topic><topic>Simulations</topic><topic>Small intestine</topic><topic>Smooth muscle</topic><topic>Surface area</topic><topic>Tissues</topic><topic>Villi</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shyer, Amy E.</creatorcontrib><creatorcontrib>Tallinen, Tuomas</creatorcontrib><creatorcontrib>Nerurkar, Nandan L.</creatorcontrib><creatorcontrib>Wei, Zhiyan</creatorcontrib><creatorcontrib>Gil, Eun Seok</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Tabin, Clifford J.</creatorcontrib><creatorcontrib>Mahadevan, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shyer, Amy E.</au><au>Tallinen, Tuomas</au><au>Nerurkar, Nandan L.</au><au>Wei, Zhiyan</au><au>Gil, Eun Seok</au><au>Kaplan, David L.</au><au>Tabin, Clifford J.</au><au>Mahadevan, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Villification: How the Gut Gets Its Villi</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-10-11</date><risdate>2013</risdate><volume>342</volume><issue>6155</issue><spage>212</spage><epage>218</epage><pages>212-218</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We find that these steps of vilification depend on the sequential differentiation of the distinct smooth muscle layers of the girt, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. A quantitative computational model, incorporating measured properties of the developing gut recapitulates the morphological patterns seen during villification in a variety of species. These results provide a mechanistic understanding of the formation of these elaborations of the lining of the gut, essential for providing sufficient surface area for nutrient absorption.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23989955</pmid><doi>10.1126/science.1238842</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-10, Vol.342 (6155), p.212-218 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4045245 |
source | MEDLINE; American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Absorption Animals Buckling Chick Embryo Chicks Circles Circumferences Compressive properties Developmental biology Diameters digestive system Endoderm Endoderm - growth & development Folding Gastrointestinal Tract - embryology Gastrointestinal Tract - ultrastructure Humans Individualized Instruction Large intestine Lumens Mesoderm - growth & development Mice Models, Biological Morphogenesis Muscle, Smooth - embryology Muscles Progressions RESEARCH ARTICLE Ridges Scientific Concepts Simulations Small intestine Smooth muscle Surface area Tissues Villi Xenopus |
title | Villification: How the Gut Gets Its Villi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Villification:%20How%20the%20Gut%20Gets%20Its%20Villi&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shyer,%20Amy%20E.&rft.date=2013-10-11&rft.volume=342&rft.issue=6155&rft.spage=212&rft.epage=218&rft.pages=212-218&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1238842&rft_dat=%3Cjstor_pubme%3E42619819%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441281159&rft_id=info:pmid/23989955&rft_jstor_id=42619819&rfr_iscdi=true |