Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling
Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power t...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2014-03, Vol.95, p.136-150 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 136 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 95 |
creator | Kochunov, Peter Jahanshad, Neda Sprooten, Emma Nichols, Thomas E. Mandl, René C. Almasy, Laura Booth, Tom Brouwer, Rachel M. Curran, Joanne E. de Zubicaray, Greig I. Dimitrova, Rali Duggirala, Ravi Fox, Peter T. Hong, L. Elliot Landman, Bennett A. Lemaitre, Hervé Lopez, Lorna Martin, Nicholas G. McMahon, Katie L. Mitchell, Braxton D. Olvera, Rene L. Peterson, Charles P. Starr, John M. Sussmann, Jessika E. Toga, Arthur W. Wardlaw, Joanna M. Wright, Margaret J. Wright, Susan N. Bastin, Mark E. McIntosh, Andrew M. Boomsma, Dorret I. Kahn, René S. den Braber, Anouk de Geus, Eco JC Deary, Ian J. Hulshoff Pol, Hilleke E. Williamson, Douglas E. Blangero, John van ’t Ent, Dennis Thompson, Paul M. Glahn, David C. |
description | Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. |
doi_str_mv | 10.1016/j.neuroimage.2014.03.033 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_40438783</originalsourceid><addsrcrecordid>eNqlkE1OxDAMhSMEYoafO_gCLUl_pi0LNgjEhh37ypO6bUZtEiXpoF6Gs5IiNqyRLPnp2e-zZMZA8FRwcXg4pZoWZ9SMA6UZF0XK81j5BdsL3pRJU1bZ5abLPKmFaHbsxvsT57wRRX3NdllxKKuqFnv29b5MQSVeBQIflm4F0wN2nQrqTDCQpqAkUN-TDB6Mht6hDMponAC18iY4Y39CkhwdXbQ_xw02YwjkHkGa2aJTeoCZAsZMF8WwCZzWyN441jqDciQPvXHQYdyzxkwxdMeuepw83f_2W_b0-vLx_JbY5ThTJ0mHeLK1Lr7Cra1B1f6daDW2gzm3BS_yuqrzfwO-AW9Ef7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Kochunov, Peter ; Jahanshad, Neda ; Sprooten, Emma ; Nichols, Thomas E. ; Mandl, René C. ; Almasy, Laura ; Booth, Tom ; Brouwer, Rachel M. ; Curran, Joanne E. ; de Zubicaray, Greig I. ; Dimitrova, Rali ; Duggirala, Ravi ; Fox, Peter T. ; Hong, L. Elliot ; Landman, Bennett A. ; Lemaitre, Hervé ; Lopez, Lorna ; Martin, Nicholas G. ; McMahon, Katie L. ; Mitchell, Braxton D. ; Olvera, Rene L. ; Peterson, Charles P. ; Starr, John M. ; Sussmann, Jessika E. ; Toga, Arthur W. ; Wardlaw, Joanna M. ; Wright, Margaret J. ; Wright, Susan N. ; Bastin, Mark E. ; McIntosh, Andrew M. ; Boomsma, Dorret I. ; Kahn, René S. ; den Braber, Anouk ; de Geus, Eco JC ; Deary, Ian J. ; Hulshoff Pol, Hilleke E. ; Williamson, Douglas E. ; Blangero, John ; van ’t Ent, Dennis ; Thompson, Paul M. ; Glahn, David C.</creator><creatorcontrib>Kochunov, Peter ; Jahanshad, Neda ; Sprooten, Emma ; Nichols, Thomas E. ; Mandl, René C. ; Almasy, Laura ; Booth, Tom ; Brouwer, Rachel M. ; Curran, Joanne E. ; de Zubicaray, Greig I. ; Dimitrova, Rali ; Duggirala, Ravi ; Fox, Peter T. ; Hong, L. Elliot ; Landman, Bennett A. ; Lemaitre, Hervé ; Lopez, Lorna ; Martin, Nicholas G. ; McMahon, Katie L. ; Mitchell, Braxton D. ; Olvera, Rene L. ; Peterson, Charles P. ; Starr, John M. ; Sussmann, Jessika E. ; Toga, Arthur W. ; Wardlaw, Joanna M. ; Wright, Margaret J. ; Wright, Susan N. ; Bastin, Mark E. ; McIntosh, Andrew M. ; Boomsma, Dorret I. ; Kahn, René S. ; den Braber, Anouk ; de Geus, Eco JC ; Deary, Ian J. ; Hulshoff Pol, Hilleke E. ; Williamson, Douglas E. ; Blangero, John ; van ’t Ent, Dennis ; Thompson, Paul M. ; Glahn, David C.</creatorcontrib><description>Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2014.03.033</identifier><identifier>PMID: 24657781</identifier><language>eng</language><ispartof>NeuroImage (Orlando, Fla.), 2014-03, Vol.95, p.136-150</ispartof><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Kochunov, Peter</creatorcontrib><creatorcontrib>Jahanshad, Neda</creatorcontrib><creatorcontrib>Sprooten, Emma</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><creatorcontrib>Mandl, René C.</creatorcontrib><creatorcontrib>Almasy, Laura</creatorcontrib><creatorcontrib>Booth, Tom</creatorcontrib><creatorcontrib>Brouwer, Rachel M.</creatorcontrib><creatorcontrib>Curran, Joanne E.</creatorcontrib><creatorcontrib>de Zubicaray, Greig I.</creatorcontrib><creatorcontrib>Dimitrova, Rali</creatorcontrib><creatorcontrib>Duggirala, Ravi</creatorcontrib><creatorcontrib>Fox, Peter T.</creatorcontrib><creatorcontrib>Hong, L. Elliot</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Lemaitre, Hervé</creatorcontrib><creatorcontrib>Lopez, Lorna</creatorcontrib><creatorcontrib>Martin, Nicholas G.</creatorcontrib><creatorcontrib>McMahon, Katie L.</creatorcontrib><creatorcontrib>Mitchell, Braxton D.</creatorcontrib><creatorcontrib>Olvera, Rene L.</creatorcontrib><creatorcontrib>Peterson, Charles P.</creatorcontrib><creatorcontrib>Starr, John M.</creatorcontrib><creatorcontrib>Sussmann, Jessika E.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Wardlaw, Joanna M.</creatorcontrib><creatorcontrib>Wright, Margaret J.</creatorcontrib><creatorcontrib>Wright, Susan N.</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><creatorcontrib>McIntosh, Andrew M.</creatorcontrib><creatorcontrib>Boomsma, Dorret I.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>den Braber, Anouk</creatorcontrib><creatorcontrib>de Geus, Eco JC</creatorcontrib><creatorcontrib>Deary, Ian J.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><creatorcontrib>Williamson, Douglas E.</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>van ’t Ent, Dennis</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><title>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</title><title>NeuroImage (Orlando, Fla.)</title><description>Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.</description><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqlkE1OxDAMhSMEYoafO_gCLUl_pi0LNgjEhh37ypO6bUZtEiXpoF6Gs5IiNqyRLPnp2e-zZMZA8FRwcXg4pZoWZ9SMA6UZF0XK81j5BdsL3pRJU1bZ5abLPKmFaHbsxvsT57wRRX3NdllxKKuqFnv29b5MQSVeBQIflm4F0wN2nQrqTDCQpqAkUN-TDB6Mht6hDMponAC18iY4Y39CkhwdXbQ_xw02YwjkHkGa2aJTeoCZAsZMF8WwCZzWyN441jqDciQPvXHQYdyzxkwxdMeuepw83f_2W_b0-vLx_JbY5ThTJ0mHeLK1Lr7Cra1B1f6daDW2gzm3BS_yuqrzfwO-AW9Ef7w</recordid><startdate>20140318</startdate><enddate>20140318</enddate><creator>Kochunov, Peter</creator><creator>Jahanshad, Neda</creator><creator>Sprooten, Emma</creator><creator>Nichols, Thomas E.</creator><creator>Mandl, René C.</creator><creator>Almasy, Laura</creator><creator>Booth, Tom</creator><creator>Brouwer, Rachel M.</creator><creator>Curran, Joanne E.</creator><creator>de Zubicaray, Greig I.</creator><creator>Dimitrova, Rali</creator><creator>Duggirala, Ravi</creator><creator>Fox, Peter T.</creator><creator>Hong, L. Elliot</creator><creator>Landman, Bennett A.</creator><creator>Lemaitre, Hervé</creator><creator>Lopez, Lorna</creator><creator>Martin, Nicholas G.</creator><creator>McMahon, Katie L.</creator><creator>Mitchell, Braxton D.</creator><creator>Olvera, Rene L.</creator><creator>Peterson, Charles P.</creator><creator>Starr, John M.</creator><creator>Sussmann, Jessika E.</creator><creator>Toga, Arthur W.</creator><creator>Wardlaw, Joanna M.</creator><creator>Wright, Margaret J.</creator><creator>Wright, Susan N.</creator><creator>Bastin, Mark E.</creator><creator>McIntosh, Andrew M.</creator><creator>Boomsma, Dorret I.</creator><creator>Kahn, René S.</creator><creator>den Braber, Anouk</creator><creator>de Geus, Eco JC</creator><creator>Deary, Ian J.</creator><creator>Hulshoff Pol, Hilleke E.</creator><creator>Williamson, Douglas E.</creator><creator>Blangero, John</creator><creator>van ’t Ent, Dennis</creator><creator>Thompson, Paul M.</creator><creator>Glahn, David C.</creator><scope>5PM</scope></search><sort><creationdate>20140318</creationdate><title>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</title><author>Kochunov, Peter ; Jahanshad, Neda ; Sprooten, Emma ; Nichols, Thomas E. ; Mandl, René C. ; Almasy, Laura ; Booth, Tom ; Brouwer, Rachel M. ; Curran, Joanne E. ; de Zubicaray, Greig I. ; Dimitrova, Rali ; Duggirala, Ravi ; Fox, Peter T. ; Hong, L. Elliot ; Landman, Bennett A. ; Lemaitre, Hervé ; Lopez, Lorna ; Martin, Nicholas G. ; McMahon, Katie L. ; Mitchell, Braxton D. ; Olvera, Rene L. ; Peterson, Charles P. ; Starr, John M. ; Sussmann, Jessika E. ; Toga, Arthur W. ; Wardlaw, Joanna M. ; Wright, Margaret J. ; Wright, Susan N. ; Bastin, Mark E. ; McIntosh, Andrew M. ; Boomsma, Dorret I. ; Kahn, René S. ; den Braber, Anouk ; de Geus, Eco JC ; Deary, Ian J. ; Hulshoff Pol, Hilleke E. ; Williamson, Douglas E. ; Blangero, John ; van ’t Ent, Dennis ; Thompson, Paul M. ; Glahn, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_40438783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kochunov, Peter</creatorcontrib><creatorcontrib>Jahanshad, Neda</creatorcontrib><creatorcontrib>Sprooten, Emma</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><creatorcontrib>Mandl, René C.</creatorcontrib><creatorcontrib>Almasy, Laura</creatorcontrib><creatorcontrib>Booth, Tom</creatorcontrib><creatorcontrib>Brouwer, Rachel M.</creatorcontrib><creatorcontrib>Curran, Joanne E.</creatorcontrib><creatorcontrib>de Zubicaray, Greig I.</creatorcontrib><creatorcontrib>Dimitrova, Rali</creatorcontrib><creatorcontrib>Duggirala, Ravi</creatorcontrib><creatorcontrib>Fox, Peter T.</creatorcontrib><creatorcontrib>Hong, L. Elliot</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Lemaitre, Hervé</creatorcontrib><creatorcontrib>Lopez, Lorna</creatorcontrib><creatorcontrib>Martin, Nicholas G.</creatorcontrib><creatorcontrib>McMahon, Katie L.</creatorcontrib><creatorcontrib>Mitchell, Braxton D.</creatorcontrib><creatorcontrib>Olvera, Rene L.</creatorcontrib><creatorcontrib>Peterson, Charles P.</creatorcontrib><creatorcontrib>Starr, John M.</creatorcontrib><creatorcontrib>Sussmann, Jessika E.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Wardlaw, Joanna M.</creatorcontrib><creatorcontrib>Wright, Margaret J.</creatorcontrib><creatorcontrib>Wright, Susan N.</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><creatorcontrib>McIntosh, Andrew M.</creatorcontrib><creatorcontrib>Boomsma, Dorret I.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>den Braber, Anouk</creatorcontrib><creatorcontrib>de Geus, Eco JC</creatorcontrib><creatorcontrib>Deary, Ian J.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><creatorcontrib>Williamson, Douglas E.</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>van ’t Ent, Dennis</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kochunov, Peter</au><au>Jahanshad, Neda</au><au>Sprooten, Emma</au><au>Nichols, Thomas E.</au><au>Mandl, René C.</au><au>Almasy, Laura</au><au>Booth, Tom</au><au>Brouwer, Rachel M.</au><au>Curran, Joanne E.</au><au>de Zubicaray, Greig I.</au><au>Dimitrova, Rali</au><au>Duggirala, Ravi</au><au>Fox, Peter T.</au><au>Hong, L. Elliot</au><au>Landman, Bennett A.</au><au>Lemaitre, Hervé</au><au>Lopez, Lorna</au><au>Martin, Nicholas G.</au><au>McMahon, Katie L.</au><au>Mitchell, Braxton D.</au><au>Olvera, Rene L.</au><au>Peterson, Charles P.</au><au>Starr, John M.</au><au>Sussmann, Jessika E.</au><au>Toga, Arthur W.</au><au>Wardlaw, Joanna M.</au><au>Wright, Margaret J.</au><au>Wright, Susan N.</au><au>Bastin, Mark E.</au><au>McIntosh, Andrew M.</au><au>Boomsma, Dorret I.</au><au>Kahn, René S.</au><au>den Braber, Anouk</au><au>de Geus, Eco JC</au><au>Deary, Ian J.</au><au>Hulshoff Pol, Hilleke E.</au><au>Williamson, Douglas E.</au><au>Blangero, John</au><au>van ’t Ent, Dennis</au><au>Thompson, Paul M.</au><au>Glahn, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2014-03-18</date><risdate>2014</risdate><volume>95</volume><spage>136</spage><epage>150</epage><pages>136-150</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.</abstract><pmid>24657781</pmid><doi>10.1016/j.neuroimage.2014.03.033</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2014-03, Vol.95, p.136-150 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878 |
source | Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
title | Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-site%20study%20of%20additive%20genetic%20effects%20on%20fractional%20anisotropy%20of%20cerebral%20white%20matter:%20comparing%20meta%20and%20mega%20analytical%20approaches%20for%20data%20pooling&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Kochunov,%20Peter&rft.date=2014-03-18&rft.volume=95&rft.spage=136&rft.epage=150&rft.pages=136-150&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2014.03.033&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24657781&rfr_iscdi=true |