Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling

Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2014-03, Vol.95, p.136-150
Hauptverfasser: Kochunov, Peter, Jahanshad, Neda, Sprooten, Emma, Nichols, Thomas E., Mandl, René C., Almasy, Laura, Booth, Tom, Brouwer, Rachel M., Curran, Joanne E., de Zubicaray, Greig I., Dimitrova, Rali, Duggirala, Ravi, Fox, Peter T., Hong, L. Elliot, Landman, Bennett A., Lemaitre, Hervé, Lopez, Lorna, Martin, Nicholas G., McMahon, Katie L., Mitchell, Braxton D., Olvera, Rene L., Peterson, Charles P., Starr, John M., Sussmann, Jessika E., Toga, Arthur W., Wardlaw, Joanna M., Wright, Margaret J., Wright, Susan N., Bastin, Mark E., McIntosh, Andrew M., Boomsma, Dorret I., Kahn, René S., den Braber, Anouk, de Geus, Eco JC, Deary, Ian J., Hulshoff Pol, Hilleke E., Williamson, Douglas E., Blangero, John, van ’t Ent, Dennis, Thompson, Paul M., Glahn, David C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 136
container_title NeuroImage (Orlando, Fla.)
container_volume 95
creator Kochunov, Peter
Jahanshad, Neda
Sprooten, Emma
Nichols, Thomas E.
Mandl, René C.
Almasy, Laura
Booth, Tom
Brouwer, Rachel M.
Curran, Joanne E.
de Zubicaray, Greig I.
Dimitrova, Rali
Duggirala, Ravi
Fox, Peter T.
Hong, L. Elliot
Landman, Bennett A.
Lemaitre, Hervé
Lopez, Lorna
Martin, Nicholas G.
McMahon, Katie L.
Mitchell, Braxton D.
Olvera, Rene L.
Peterson, Charles P.
Starr, John M.
Sussmann, Jessika E.
Toga, Arthur W.
Wardlaw, Joanna M.
Wright, Margaret J.
Wright, Susan N.
Bastin, Mark E.
McIntosh, Andrew M.
Boomsma, Dorret I.
Kahn, René S.
den Braber, Anouk
de Geus, Eco JC
Deary, Ian J.
Hulshoff Pol, Hilleke E.
Williamson, Douglas E.
Blangero, John
van ’t Ent, Dennis
Thompson, Paul M.
Glahn, David C.
description Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.
doi_str_mv 10.1016/j.neuroimage.2014.03.033
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_40438783</originalsourceid><addsrcrecordid>eNqlkE1OxDAMhSMEYoafO_gCLUl_pi0LNgjEhh37ypO6bUZtEiXpoF6Gs5IiNqyRLPnp2e-zZMZA8FRwcXg4pZoWZ9SMA6UZF0XK81j5BdsL3pRJU1bZ5abLPKmFaHbsxvsT57wRRX3NdllxKKuqFnv29b5MQSVeBQIflm4F0wN2nQrqTDCQpqAkUN-TDB6Mht6hDMponAC18iY4Y39CkhwdXbQ_xw02YwjkHkGa2aJTeoCZAsZMF8WwCZzWyN441jqDciQPvXHQYdyzxkwxdMeuepw83f_2W_b0-vLx_JbY5ThTJ0mHeLK1Lr7Cra1B1f6daDW2gzm3BS_yuqrzfwO-AW9Ef7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Kochunov, Peter ; Jahanshad, Neda ; Sprooten, Emma ; Nichols, Thomas E. ; Mandl, René C. ; Almasy, Laura ; Booth, Tom ; Brouwer, Rachel M. ; Curran, Joanne E. ; de Zubicaray, Greig I. ; Dimitrova, Rali ; Duggirala, Ravi ; Fox, Peter T. ; Hong, L. Elliot ; Landman, Bennett A. ; Lemaitre, Hervé ; Lopez, Lorna ; Martin, Nicholas G. ; McMahon, Katie L. ; Mitchell, Braxton D. ; Olvera, Rene L. ; Peterson, Charles P. ; Starr, John M. ; Sussmann, Jessika E. ; Toga, Arthur W. ; Wardlaw, Joanna M. ; Wright, Margaret J. ; Wright, Susan N. ; Bastin, Mark E. ; McIntosh, Andrew M. ; Boomsma, Dorret I. ; Kahn, René S. ; den Braber, Anouk ; de Geus, Eco JC ; Deary, Ian J. ; Hulshoff Pol, Hilleke E. ; Williamson, Douglas E. ; Blangero, John ; van ’t Ent, Dennis ; Thompson, Paul M. ; Glahn, David C.</creator><creatorcontrib>Kochunov, Peter ; Jahanshad, Neda ; Sprooten, Emma ; Nichols, Thomas E. ; Mandl, René C. ; Almasy, Laura ; Booth, Tom ; Brouwer, Rachel M. ; Curran, Joanne E. ; de Zubicaray, Greig I. ; Dimitrova, Rali ; Duggirala, Ravi ; Fox, Peter T. ; Hong, L. Elliot ; Landman, Bennett A. ; Lemaitre, Hervé ; Lopez, Lorna ; Martin, Nicholas G. ; McMahon, Katie L. ; Mitchell, Braxton D. ; Olvera, Rene L. ; Peterson, Charles P. ; Starr, John M. ; Sussmann, Jessika E. ; Toga, Arthur W. ; Wardlaw, Joanna M. ; Wright, Margaret J. ; Wright, Susan N. ; Bastin, Mark E. ; McIntosh, Andrew M. ; Boomsma, Dorret I. ; Kahn, René S. ; den Braber, Anouk ; de Geus, Eco JC ; Deary, Ian J. ; Hulshoff Pol, Hilleke E. ; Williamson, Douglas E. ; Blangero, John ; van ’t Ent, Dennis ; Thompson, Paul M. ; Glahn, David C.</creatorcontrib><description>Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2014.03.033</identifier><identifier>PMID: 24657781</identifier><language>eng</language><ispartof>NeuroImage (Orlando, Fla.), 2014-03, Vol.95, p.136-150</ispartof><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Kochunov, Peter</creatorcontrib><creatorcontrib>Jahanshad, Neda</creatorcontrib><creatorcontrib>Sprooten, Emma</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><creatorcontrib>Mandl, René C.</creatorcontrib><creatorcontrib>Almasy, Laura</creatorcontrib><creatorcontrib>Booth, Tom</creatorcontrib><creatorcontrib>Brouwer, Rachel M.</creatorcontrib><creatorcontrib>Curran, Joanne E.</creatorcontrib><creatorcontrib>de Zubicaray, Greig I.</creatorcontrib><creatorcontrib>Dimitrova, Rali</creatorcontrib><creatorcontrib>Duggirala, Ravi</creatorcontrib><creatorcontrib>Fox, Peter T.</creatorcontrib><creatorcontrib>Hong, L. Elliot</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Lemaitre, Hervé</creatorcontrib><creatorcontrib>Lopez, Lorna</creatorcontrib><creatorcontrib>Martin, Nicholas G.</creatorcontrib><creatorcontrib>McMahon, Katie L.</creatorcontrib><creatorcontrib>Mitchell, Braxton D.</creatorcontrib><creatorcontrib>Olvera, Rene L.</creatorcontrib><creatorcontrib>Peterson, Charles P.</creatorcontrib><creatorcontrib>Starr, John M.</creatorcontrib><creatorcontrib>Sussmann, Jessika E.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Wardlaw, Joanna M.</creatorcontrib><creatorcontrib>Wright, Margaret J.</creatorcontrib><creatorcontrib>Wright, Susan N.</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><creatorcontrib>McIntosh, Andrew M.</creatorcontrib><creatorcontrib>Boomsma, Dorret I.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>den Braber, Anouk</creatorcontrib><creatorcontrib>de Geus, Eco JC</creatorcontrib><creatorcontrib>Deary, Ian J.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><creatorcontrib>Williamson, Douglas E.</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>van ’t Ent, Dennis</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><title>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</title><title>NeuroImage (Orlando, Fla.)</title><description>Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.</description><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqlkE1OxDAMhSMEYoafO_gCLUl_pi0LNgjEhh37ypO6bUZtEiXpoF6Gs5IiNqyRLPnp2e-zZMZA8FRwcXg4pZoWZ9SMA6UZF0XK81j5BdsL3pRJU1bZ5abLPKmFaHbsxvsT57wRRX3NdllxKKuqFnv29b5MQSVeBQIflm4F0wN2nQrqTDCQpqAkUN-TDB6Mht6hDMponAC18iY4Y39CkhwdXbQ_xw02YwjkHkGa2aJTeoCZAsZMF8WwCZzWyN441jqDciQPvXHQYdyzxkwxdMeuepw83f_2W_b0-vLx_JbY5ThTJ0mHeLK1Lr7Cra1B1f6daDW2gzm3BS_yuqrzfwO-AW9Ef7w</recordid><startdate>20140318</startdate><enddate>20140318</enddate><creator>Kochunov, Peter</creator><creator>Jahanshad, Neda</creator><creator>Sprooten, Emma</creator><creator>Nichols, Thomas E.</creator><creator>Mandl, René C.</creator><creator>Almasy, Laura</creator><creator>Booth, Tom</creator><creator>Brouwer, Rachel M.</creator><creator>Curran, Joanne E.</creator><creator>de Zubicaray, Greig I.</creator><creator>Dimitrova, Rali</creator><creator>Duggirala, Ravi</creator><creator>Fox, Peter T.</creator><creator>Hong, L. Elliot</creator><creator>Landman, Bennett A.</creator><creator>Lemaitre, Hervé</creator><creator>Lopez, Lorna</creator><creator>Martin, Nicholas G.</creator><creator>McMahon, Katie L.</creator><creator>Mitchell, Braxton D.</creator><creator>Olvera, Rene L.</creator><creator>Peterson, Charles P.</creator><creator>Starr, John M.</creator><creator>Sussmann, Jessika E.</creator><creator>Toga, Arthur W.</creator><creator>Wardlaw, Joanna M.</creator><creator>Wright, Margaret J.</creator><creator>Wright, Susan N.</creator><creator>Bastin, Mark E.</creator><creator>McIntosh, Andrew M.</creator><creator>Boomsma, Dorret I.</creator><creator>Kahn, René S.</creator><creator>den Braber, Anouk</creator><creator>de Geus, Eco JC</creator><creator>Deary, Ian J.</creator><creator>Hulshoff Pol, Hilleke E.</creator><creator>Williamson, Douglas E.</creator><creator>Blangero, John</creator><creator>van ’t Ent, Dennis</creator><creator>Thompson, Paul M.</creator><creator>Glahn, David C.</creator><scope>5PM</scope></search><sort><creationdate>20140318</creationdate><title>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</title><author>Kochunov, Peter ; Jahanshad, Neda ; Sprooten, Emma ; Nichols, Thomas E. ; Mandl, René C. ; Almasy, Laura ; Booth, Tom ; Brouwer, Rachel M. ; Curran, Joanne E. ; de Zubicaray, Greig I. ; Dimitrova, Rali ; Duggirala, Ravi ; Fox, Peter T. ; Hong, L. Elliot ; Landman, Bennett A. ; Lemaitre, Hervé ; Lopez, Lorna ; Martin, Nicholas G. ; McMahon, Katie L. ; Mitchell, Braxton D. ; Olvera, Rene L. ; Peterson, Charles P. ; Starr, John M. ; Sussmann, Jessika E. ; Toga, Arthur W. ; Wardlaw, Joanna M. ; Wright, Margaret J. ; Wright, Susan N. ; Bastin, Mark E. ; McIntosh, Andrew M. ; Boomsma, Dorret I. ; Kahn, René S. ; den Braber, Anouk ; de Geus, Eco JC ; Deary, Ian J. ; Hulshoff Pol, Hilleke E. ; Williamson, Douglas E. ; Blangero, John ; van ’t Ent, Dennis ; Thompson, Paul M. ; Glahn, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_40438783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kochunov, Peter</creatorcontrib><creatorcontrib>Jahanshad, Neda</creatorcontrib><creatorcontrib>Sprooten, Emma</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><creatorcontrib>Mandl, René C.</creatorcontrib><creatorcontrib>Almasy, Laura</creatorcontrib><creatorcontrib>Booth, Tom</creatorcontrib><creatorcontrib>Brouwer, Rachel M.</creatorcontrib><creatorcontrib>Curran, Joanne E.</creatorcontrib><creatorcontrib>de Zubicaray, Greig I.</creatorcontrib><creatorcontrib>Dimitrova, Rali</creatorcontrib><creatorcontrib>Duggirala, Ravi</creatorcontrib><creatorcontrib>Fox, Peter T.</creatorcontrib><creatorcontrib>Hong, L. Elliot</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Lemaitre, Hervé</creatorcontrib><creatorcontrib>Lopez, Lorna</creatorcontrib><creatorcontrib>Martin, Nicholas G.</creatorcontrib><creatorcontrib>McMahon, Katie L.</creatorcontrib><creatorcontrib>Mitchell, Braxton D.</creatorcontrib><creatorcontrib>Olvera, Rene L.</creatorcontrib><creatorcontrib>Peterson, Charles P.</creatorcontrib><creatorcontrib>Starr, John M.</creatorcontrib><creatorcontrib>Sussmann, Jessika E.</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Wardlaw, Joanna M.</creatorcontrib><creatorcontrib>Wright, Margaret J.</creatorcontrib><creatorcontrib>Wright, Susan N.</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><creatorcontrib>McIntosh, Andrew M.</creatorcontrib><creatorcontrib>Boomsma, Dorret I.</creatorcontrib><creatorcontrib>Kahn, René S.</creatorcontrib><creatorcontrib>den Braber, Anouk</creatorcontrib><creatorcontrib>de Geus, Eco JC</creatorcontrib><creatorcontrib>Deary, Ian J.</creatorcontrib><creatorcontrib>Hulshoff Pol, Hilleke E.</creatorcontrib><creatorcontrib>Williamson, Douglas E.</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>van ’t Ent, Dennis</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>Glahn, David C.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kochunov, Peter</au><au>Jahanshad, Neda</au><au>Sprooten, Emma</au><au>Nichols, Thomas E.</au><au>Mandl, René C.</au><au>Almasy, Laura</au><au>Booth, Tom</au><au>Brouwer, Rachel M.</au><au>Curran, Joanne E.</au><au>de Zubicaray, Greig I.</au><au>Dimitrova, Rali</au><au>Duggirala, Ravi</au><au>Fox, Peter T.</au><au>Hong, L. Elliot</au><au>Landman, Bennett A.</au><au>Lemaitre, Hervé</au><au>Lopez, Lorna</au><au>Martin, Nicholas G.</au><au>McMahon, Katie L.</au><au>Mitchell, Braxton D.</au><au>Olvera, Rene L.</au><au>Peterson, Charles P.</au><au>Starr, John M.</au><au>Sussmann, Jessika E.</au><au>Toga, Arthur W.</au><au>Wardlaw, Joanna M.</au><au>Wright, Margaret J.</au><au>Wright, Susan N.</au><au>Bastin, Mark E.</au><au>McIntosh, Andrew M.</au><au>Boomsma, Dorret I.</au><au>Kahn, René S.</au><au>den Braber, Anouk</au><au>de Geus, Eco JC</au><au>Deary, Ian J.</au><au>Hulshoff Pol, Hilleke E.</au><au>Williamson, Douglas E.</au><au>Blangero, John</au><au>van ’t Ent, Dennis</au><au>Thompson, Paul M.</au><au>Glahn, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2014-03-18</date><risdate>2014</risdate><volume>95</volume><spage>136</spage><epage>150</epage><pages>136-150</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.</abstract><pmid>24657781</pmid><doi>10.1016/j.neuroimage.2014.03.033</doi></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2014-03, Vol.95, p.136-150
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878
source Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
title Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-site%20study%20of%20additive%20genetic%20effects%20on%20fractional%20anisotropy%20of%20cerebral%20white%20matter:%20comparing%20meta%20and%20mega%20analytical%20approaches%20for%20data%20pooling&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Kochunov,%20Peter&rft.date=2014-03-18&rft.volume=95&rft.spage=136&rft.epage=150&rft.pages=136-150&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2014.03.033&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4043878%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24657781&rfr_iscdi=true