Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach

In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Physics, 140(20):Article No. 204510 140(20):Article No. 204510, 2014-05, Vol.140 (20), p.204510-204510
Hauptverfasser: Medasani, Bharat, Ovanesyan, Zaven, Thomas, Dennis G, Sushko, Maria L, Marucho, Marcelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204510
container_issue 20
container_start_page 204510
container_title Journal of Chemical Physics, 140(20):Article No. 204510
container_volume 140
creator Medasani, Bharat
Ovanesyan, Zaven
Thomas, Dennis G
Sushko, Maria L
Marucho, Marcelo
description In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.
doi_str_mv 10.1063/1.4876002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4039739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127663149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-e2df4b012108bbff2036cc00403f6e9c28e6eb5baf1c7ef060b5d2ea405d01223</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EokNhwR9AFmxgkXL9iJN0gYQqHpUqsYG15TjXTCrHDnYyIv8elxkqYGXr-vM5Pj6EPGdwwUCJt-xCto0C4A_IjkHbVY3q4CHZlQmrOgXqjDzJ-RYAWMPlY3LGZduCALkjh-sYRktN3qYJl7RREwaaoz9gWCj-tH4dcKCH6NcJKTqHdsk0BprnPabRGk_Rl1nZ0iGuvUfqzYYpX1JDBwx5XDbq1mCXMYYCm3lO0dj9U_LIGZ_x2Wk9J98-fvh69bm6-fLp-ur9TWWlgKVCPjjZA-MlVd87x0EoawEkCKews7xFhX3dG8dsgw4U9PXA0Uioh3KLi3Py7qg7r_2Egy2pkvF6TuNk0qajGfW_J2Hc6-_xoItD14iuCLw8CsS8jDrbcUG7tzGEElozJgT_7fL65JLijxXzoqcxW_TeBIxr1qwWrKslF7Kgr_5Db-OaytdkzRlvlBJM3rm-OVI2xZwTuvsXM9B3lWumT5UX9sXfEe_JPx2LX4iAqAk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127663149</pqid></control><display><type>article</type><title>Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Medasani, Bharat ; Ovanesyan, Zaven ; Thomas, Dennis G ; Sushko, Maria L ; Marucho, Marcelo</creator><creatorcontrib>Medasani, Bharat ; Ovanesyan, Zaven ; Thomas, Dennis G ; Sushko, Maria L ; Marucho, Marcelo ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4876002</identifier><identifier>PMID: 24880304</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Electrolytes - chemistry ; Ions - chemistry ; Liquids, Glasses, and Crystals ; Models, Chemical ; Monte Carlo Method ; Physics ; Solvents - chemistry ; Static Electricity</subject><ispartof>Journal of Chemical Physics, 140(20):Article No. 204510, 2014-05, Vol.140 (20), p.204510-204510</ispartof><rights>Copyright American Institute of Physics May 28, 2014</rights><rights>Copyright © 2014 AIP Publishing LLC 2014 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-e2df4b012108bbff2036cc00403f6e9c28e6eb5baf1c7ef060b5d2ea405d01223</citedby><cites>FETCH-LOGICAL-c430t-e2df4b012108bbff2036cc00403f6e9c28e6eb5baf1c7ef060b5d2ea405d01223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24880304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1133222$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Medasani, Bharat</creatorcontrib><creatorcontrib>Ovanesyan, Zaven</creatorcontrib><creatorcontrib>Thomas, Dennis G</creatorcontrib><creatorcontrib>Sushko, Maria L</creatorcontrib><creatorcontrib>Marucho, Marcelo</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach</title><title>Journal of Chemical Physics, 140(20):Article No. 204510</title><addtitle>J Chem Phys</addtitle><description>In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.</description><subject>Electrolytes - chemistry</subject><subject>Ions - chemistry</subject><subject>Liquids, Glasses, and Crystals</subject><subject>Models, Chemical</subject><subject>Monte Carlo Method</subject><subject>Physics</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EokNhwR9AFmxgkXL9iJN0gYQqHpUqsYG15TjXTCrHDnYyIv8elxkqYGXr-vM5Pj6EPGdwwUCJt-xCto0C4A_IjkHbVY3q4CHZlQmrOgXqjDzJ-RYAWMPlY3LGZduCALkjh-sYRktN3qYJl7RREwaaoz9gWCj-tH4dcKCH6NcJKTqHdsk0BprnPabRGk_Rl1nZ0iGuvUfqzYYpX1JDBwx5XDbq1mCXMYYCm3lO0dj9U_LIGZ_x2Wk9J98-fvh69bm6-fLp-ur9TWWlgKVCPjjZA-MlVd87x0EoawEkCKews7xFhX3dG8dsgw4U9PXA0Uioh3KLi3Py7qg7r_2Egy2pkvF6TuNk0qajGfW_J2Hc6-_xoItD14iuCLw8CsS8jDrbcUG7tzGEElozJgT_7fL65JLijxXzoqcxW_TeBIxr1qwWrKslF7Kgr_5Db-OaytdkzRlvlBJM3rm-OVI2xZwTuvsXM9B3lWumT5UX9sXfEe_JPx2LX4iAqAk</recordid><startdate>20140528</startdate><enddate>20140528</enddate><creator>Medasani, Bharat</creator><creator>Ovanesyan, Zaven</creator><creator>Thomas, Dennis G</creator><creator>Sushko, Maria L</creator><creator>Marucho, Marcelo</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140528</creationdate><title>Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach</title><author>Medasani, Bharat ; Ovanesyan, Zaven ; Thomas, Dennis G ; Sushko, Maria L ; Marucho, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-e2df4b012108bbff2036cc00403f6e9c28e6eb5baf1c7ef060b5d2ea405d01223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Electrolytes - chemistry</topic><topic>Ions - chemistry</topic><topic>Liquids, Glasses, and Crystals</topic><topic>Models, Chemical</topic><topic>Monte Carlo Method</topic><topic>Physics</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medasani, Bharat</creatorcontrib><creatorcontrib>Ovanesyan, Zaven</creatorcontrib><creatorcontrib>Thomas, Dennis G</creatorcontrib><creatorcontrib>Sushko, Maria L</creatorcontrib><creatorcontrib>Marucho, Marcelo</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Chemical Physics, 140(20):Article No. 204510</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medasani, Bharat</au><au>Ovanesyan, Zaven</au><au>Thomas, Dennis G</au><au>Sushko, Maria L</au><au>Marucho, Marcelo</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach</atitle><jtitle>Journal of Chemical Physics, 140(20):Article No. 204510</jtitle><addtitle>J Chem Phys</addtitle><date>2014-05-28</date><risdate>2014</risdate><volume>140</volume><issue>20</issue><spage>204510</spage><epage>204510</epage><pages>204510-204510</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24880304</pmid><doi>10.1063/1.4876002</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof Journal of Chemical Physics, 140(20):Article No. 204510, 2014-05, Vol.140 (20), p.204510-204510
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4039739
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Electrolytes - chemistry
Ions - chemistry
Liquids, Glasses, and Crystals
Models, Chemical
Monte Carlo Method
Physics
Solvents - chemistry
Static Electricity
title Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20asymmetry%20and%20solvent%20excluded%20volume%20effects%20on%20spherical%20electric%20double%20layers:%20a%20density%20functional%20approach&rft.jtitle=Journal%20of%20Chemical%20Physics,%20140(20):Article%20No.%20204510&rft.au=Medasani,%20Bharat&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2014-05-28&rft.volume=140&rft.issue=20&rft.spage=204510&rft.epage=204510&rft.pages=204510-204510&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4876002&rft_dat=%3Cproquest_pubme%3E2127663149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127663149&rft_id=info:pmid/24880304&rfr_iscdi=true