A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations
A means to predict the effects of gene over-expression, knockouts, and environmental stimuli in silico is useful for system biologists to develop and test hypotheses. Several studies had predicted the expression of all Escherichia coli genes from sequences and reported a correlation of 0.301 between...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2014-05, Vol.15 (1), p.140-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | 1 |
container_start_page | 140 |
container_title | BMC bioinformatics |
container_volume | 15 |
creator | Ling, Maurice H T Poh, Chueh Loo |
description | A means to predict the effects of gene over-expression, knockouts, and environmental stimuli in silico is useful for system biologists to develop and test hypotheses. Several studies had predicted the expression of all Escherichia coli genes from sequences and reported a correlation of 0.301 between predicted and actual expression. However, these do not allow biologists to study the effects of gene perturbations on the native transcriptome.
We developed a predictor to predict transcriptome-scale gene expression from a small number (n = 59) of known gene expressions using gene co-expression network, which can be used to predict the effects of over-expressions and knockdowns on E. coli transcriptome. In terms of transcriptome prediction, our results show that the correlation between predicted and actual expression value is 0.467, which is similar to the microarray intra-array variation (p-value = 0.348), suggesting that intra-array variation accounts for a substantial portion of the transcriptome prediction error. In terms of predicting the effects of gene perturbation(s), our results suggest that the expression of 83% of the genes affected by perturbation can be predicted within 40% of error and the correlation between predicted and actual expression values among the affected genes to be 0.698. With the ability to predict the effects of gene perturbations, we demonstrated that our predictor has the potential to estimate the effects of varying gene expression level on the native transcriptome.
We present a potential means to predict an entire transcriptome and a tool to estimate the effects of gene perturbations for E. coli, which will aid biologists in hypothesis development. This study forms the baseline for future work in using gene co-expression network for gene expression prediction. |
doi_str_mv | 10.1186/1471-2105-15-140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4038595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534837491</sourcerecordid><originalsourceid>FETCH-LOGICAL-b387t-b4c14917b0381ae5fe412b63ee9a0d4b5d97c5837f688009b58a661c5d738b03</originalsourceid><addsrcrecordid>eNqNUUFrHCEUltCSpJvccypCL7lMqjM6OpdCWJImsJBL7qLOm13DjE7VKfTfxyWbkBQKhSf6fJ_f-94nQheUXFEq2--UCVrVlPCKlmDkCJ2-XX16dz5BX1J6IoQKSfgxOqmZlKxh3SlS13iO0DubQ8RDWYfM-S2-SXYH0dmd09iG0eEctU82ujmHCbD2Pc47wDAMYHPCYcBb8IBniHmJRmcXfDpDnwc9Jjg_7Cv0eHvzuL6rNg8_79fXm8o0UuTKMEtZR4UhjaQa-ACM1qZtADpNemZ43wnLZSOGVkpCOsOlbltqeS8aWR6t0I8X2nkxE_QWfNE6qjm6Scc_KminPla826lt-K1Yacg7XgjWLwTGhX8QfKzYMKm9v2rvr6Il2F7G5UFGDL8WSFlNLlkYR-0hLKnAGlaGKJP-D7TuGC12FOi3v6BPYYm-2LlHcdFxIeqC-vregjfpr3_dPAOrpaxH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535795772</pqid></control><display><type>article</type><title>A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ling, Maurice H T ; Poh, Chueh Loo</creator><creatorcontrib>Ling, Maurice H T ; Poh, Chueh Loo</creatorcontrib><description>A means to predict the effects of gene over-expression, knockouts, and environmental stimuli in silico is useful for system biologists to develop and test hypotheses. Several studies had predicted the expression of all Escherichia coli genes from sequences and reported a correlation of 0.301 between predicted and actual expression. However, these do not allow biologists to study the effects of gene perturbations on the native transcriptome.
We developed a predictor to predict transcriptome-scale gene expression from a small number (n = 59) of known gene expressions using gene co-expression network, which can be used to predict the effects of over-expressions and knockdowns on E. coli transcriptome. In terms of transcriptome prediction, our results show that the correlation between predicted and actual expression value is 0.467, which is similar to the microarray intra-array variation (p-value = 0.348), suggesting that intra-array variation accounts for a substantial portion of the transcriptome prediction error. In terms of predicting the effects of gene perturbation(s), our results suggest that the expression of 83% of the genes affected by perturbation can be predicted within 40% of error and the correlation between predicted and actual expression values among the affected genes to be 0.698. With the ability to predict the effects of gene perturbations, we demonstrated that our predictor has the potential to estimate the effects of varying gene expression level on the native transcriptome.
We present a potential means to predict an entire transcriptome and a tool to estimate the effects of gene perturbations for E. coli, which will aid biologists in hypothesis development. This study forms the baseline for future work in using gene co-expression network for gene expression prediction.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-15-140</identifier><identifier>PMID: 24884349</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Endopeptidases - genetics ; Endopeptidases - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression Profiling - methods ; Gene Expression Regulation, Bacterial ; Gene Knockout Techniques ; Gene Regulatory Networks ; Oligonucleotide Array Sequence Analysis</subject><ispartof>BMC bioinformatics, 2014-05, Vol.15 (1), p.140-140</ispartof><rights>2014 Ling and Poh; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Copyright © 2014 Ling and Poh; licensee BioMed Central Ltd. 2014 Ling and Poh; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038595/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038595/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24884349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Maurice H T</creatorcontrib><creatorcontrib>Poh, Chueh Loo</creatorcontrib><title>A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>A means to predict the effects of gene over-expression, knockouts, and environmental stimuli in silico is useful for system biologists to develop and test hypotheses. Several studies had predicted the expression of all Escherichia coli genes from sequences and reported a correlation of 0.301 between predicted and actual expression. However, these do not allow biologists to study the effects of gene perturbations on the native transcriptome.
We developed a predictor to predict transcriptome-scale gene expression from a small number (n = 59) of known gene expressions using gene co-expression network, which can be used to predict the effects of over-expressions and knockdowns on E. coli transcriptome. In terms of transcriptome prediction, our results show that the correlation between predicted and actual expression value is 0.467, which is similar to the microarray intra-array variation (p-value = 0.348), suggesting that intra-array variation accounts for a substantial portion of the transcriptome prediction error. In terms of predicting the effects of gene perturbation(s), our results suggest that the expression of 83% of the genes affected by perturbation can be predicted within 40% of error and the correlation between predicted and actual expression values among the affected genes to be 0.698. With the ability to predict the effects of gene perturbations, we demonstrated that our predictor has the potential to estimate the effects of varying gene expression level on the native transcriptome.
We present a potential means to predict an entire transcriptome and a tool to estimate the effects of gene perturbations for E. coli, which will aid biologists in hypothesis development. This study forms the baseline for future work in using gene co-expression network for gene expression prediction.</description><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Knockout Techniques</subject><subject>Gene Regulatory Networks</subject><subject>Oligonucleotide Array Sequence Analysis</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUUFrHCEUltCSpJvccypCL7lMqjM6OpdCWJImsJBL7qLOm13DjE7VKfTfxyWbkBQKhSf6fJ_f-94nQheUXFEq2--UCVrVlPCKlmDkCJ2-XX16dz5BX1J6IoQKSfgxOqmZlKxh3SlS13iO0DubQ8RDWYfM-S2-SXYH0dmd09iG0eEctU82ujmHCbD2Pc47wDAMYHPCYcBb8IBniHmJRmcXfDpDnwc9Jjg_7Cv0eHvzuL6rNg8_79fXm8o0UuTKMEtZR4UhjaQa-ACM1qZtADpNemZ43wnLZSOGVkpCOsOlbltqeS8aWR6t0I8X2nkxE_QWfNE6qjm6Scc_KminPla826lt-K1Yacg7XgjWLwTGhX8QfKzYMKm9v2rvr6Il2F7G5UFGDL8WSFlNLlkYR-0hLKnAGlaGKJP-D7TuGC12FOi3v6BPYYm-2LlHcdFxIeqC-vregjfpr3_dPAOrpaxH</recordid><startdate>20140513</startdate><enddate>20140513</enddate><creator>Ling, Maurice H T</creator><creator>Poh, Chueh Loo</creator><general>BioMed Central</general><general>BioMed Central Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20140513</creationdate><title>A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations</title><author>Ling, Maurice H T ; Poh, Chueh Loo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b387t-b4c14917b0381ae5fe412b63ee9a0d4b5d97c5837f688009b58a661c5d738b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Knockout Techniques</topic><topic>Gene Regulatory Networks</topic><topic>Oligonucleotide Array Sequence Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Maurice H T</creatorcontrib><creatorcontrib>Poh, Chueh Loo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Maurice H T</au><au>Poh, Chueh Loo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2014-05-13</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>140</spage><epage>140</epage><pages>140-140</pages><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>A means to predict the effects of gene over-expression, knockouts, and environmental stimuli in silico is useful for system biologists to develop and test hypotheses. Several studies had predicted the expression of all Escherichia coli genes from sequences and reported a correlation of 0.301 between predicted and actual expression. However, these do not allow biologists to study the effects of gene perturbations on the native transcriptome.
We developed a predictor to predict transcriptome-scale gene expression from a small number (n = 59) of known gene expressions using gene co-expression network, which can be used to predict the effects of over-expressions and knockdowns on E. coli transcriptome. In terms of transcriptome prediction, our results show that the correlation between predicted and actual expression value is 0.467, which is similar to the microarray intra-array variation (p-value = 0.348), suggesting that intra-array variation accounts for a substantial portion of the transcriptome prediction error. In terms of predicting the effects of gene perturbation(s), our results suggest that the expression of 83% of the genes affected by perturbation can be predicted within 40% of error and the correlation between predicted and actual expression values among the affected genes to be 0.698. With the ability to predict the effects of gene perturbations, we demonstrated that our predictor has the potential to estimate the effects of varying gene expression level on the native transcriptome.
We present a potential means to predict an entire transcriptome and a tool to estimate the effects of gene perturbations for E. coli, which will aid biologists in hypothesis development. This study forms the baseline for future work in using gene co-expression network for gene expression prediction.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>24884349</pmid><doi>10.1186/1471-2105-15-140</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2014-05, Vol.15 (1), p.140-140 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4038595 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Endopeptidases - genetics Endopeptidases - metabolism Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Profiling - methods Gene Expression Regulation, Bacterial Gene Knockout Techniques Gene Regulatory Networks Oligonucleotide Array Sequence Analysis |
title | A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20predictor%20for%20predicting%20Escherichia%20coli%20transcriptome%20and%20the%20effects%20of%20gene%20perturbations&rft.jtitle=BMC%20bioinformatics&rft.au=Ling,%20Maurice%20H%20T&rft.date=2014-05-13&rft.volume=15&rft.issue=1&rft.spage=140&rft.epage=140&rft.pages=140-140&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-15-140&rft_dat=%3Cproquest_pubme%3E1534837491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535795772&rft_id=info:pmid/24884349&rfr_iscdi=true |