Achieving high-frequency optical control of synaptic transmission

The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2014-05, Vol.34 (22), p.7704-7714
Hauptverfasser: Jackman, Skyler L, Beneduce, Brandon M, Drew, Iain R, Regehr, Wade G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7714
container_issue 22
container_start_page 7704
container_title The Journal of neuroscience
container_volume 34
creator Jackman, Skyler L
Beneduce, Brandon M
Drew, Iain R
Regehr, Wade G
description The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications.
doi_str_mv 10.1523/JNEUROSCI.4694-13.2014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4035530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551615455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-b906fc2437834cbe210e899539880e033654f24575dcf03b8639c9074bb9c6b3</originalsourceid><addsrcrecordid>eNqFkUtLw0AUhQdRbK3-hZKlm9Q7r0xmI5Tio1IsaF0PyXTSjKSZmkkL_fdOaC26cnXh3nMP5_AhNMQwwpzQu5fXh4-3-ftkOmKJZDGmIwKYnaF-uMqYMMDnqA9EQJwwwXroyvtPABCAxSXqEZYKwgXro_FYl9bsbL2KSrsq46IxX1tT633kNq3VWRVpV7eNqyJXRH5fZ902apus9mvrvXX1Nboossqbm-McoMXjw2LyHM_mT9PJeBZrjmkb5xKSQhNGRUqZzg3BYFIpOZVpCgYoTTgrCOOCL3UBNE8TKrUEwfJc6iSnA3R_sN1s87VZahNSZZXaNHadNXvlMqv-XmpbqpXbKQaUcwrB4PZo0LhQ0bcqFNCmqrLauK1XmHOcYM6C-H8pBclDQBKkyUGqG-d9Y4pTIgyqI6VOpFRHSmGqOlLhcfi7z-ntBw39Bp0XkIM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530956392</pqid></control><display><type>article</type><title>Achieving high-frequency optical control of synaptic transmission</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Jackman, Skyler L ; Beneduce, Brandon M ; Drew, Iain R ; Regehr, Wade G</creator><creatorcontrib>Jackman, Skyler L ; Beneduce, Brandon M ; Drew, Iain R ; Regehr, Wade G</creatorcontrib><description>The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4694-13.2014</identifier><identifier>PMID: 24872574</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Adeno-associated virus ; Animals ; Channelrhodopsins ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Optogenetics - methods ; Organ Culture Techniques ; Synapses - chemistry ; Synapses - genetics ; Synapses - physiology ; Synaptic Transmission - genetics</subject><ispartof>The Journal of neuroscience, 2014-05, Vol.34 (22), p.7704-7714</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/347704-11$15.00/0.</rights><rights>Copyright © 2014 the authors 0270-6474/14/347704-11$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-b906fc2437834cbe210e899539880e033654f24575dcf03b8639c9074bb9c6b3</citedby><cites>FETCH-LOGICAL-c513t-b906fc2437834cbe210e899539880e033654f24575dcf03b8639c9074bb9c6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035530/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035530/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24872574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackman, Skyler L</creatorcontrib><creatorcontrib>Beneduce, Brandon M</creatorcontrib><creatorcontrib>Drew, Iain R</creatorcontrib><creatorcontrib>Regehr, Wade G</creatorcontrib><title>Achieving high-frequency optical control of synaptic transmission</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Channelrhodopsins</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Optogenetics - methods</subject><subject>Organ Culture Techniques</subject><subject>Synapses - chemistry</subject><subject>Synapses - genetics</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - genetics</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLw0AUhQdRbK3-hZKlm9Q7r0xmI5Tio1IsaF0PyXTSjKSZmkkL_fdOaC26cnXh3nMP5_AhNMQwwpzQu5fXh4-3-ftkOmKJZDGmIwKYnaF-uMqYMMDnqA9EQJwwwXroyvtPABCAxSXqEZYKwgXro_FYl9bsbL2KSrsq46IxX1tT633kNq3VWRVpV7eNqyJXRH5fZ902apus9mvrvXX1Nboossqbm-McoMXjw2LyHM_mT9PJeBZrjmkb5xKSQhNGRUqZzg3BYFIpOZVpCgYoTTgrCOOCL3UBNE8TKrUEwfJc6iSnA3R_sN1s87VZahNSZZXaNHadNXvlMqv-XmpbqpXbKQaUcwrB4PZo0LhQ0bcqFNCmqrLauK1XmHOcYM6C-H8pBclDQBKkyUGqG-d9Y4pTIgyqI6VOpFRHSmGqOlLhcfi7z-ntBw39Bp0XkIM</recordid><startdate>20140528</startdate><enddate>20140528</enddate><creator>Jackman, Skyler L</creator><creator>Beneduce, Brandon M</creator><creator>Drew, Iain R</creator><creator>Regehr, Wade G</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140528</creationdate><title>Achieving high-frequency optical control of synaptic transmission</title><author>Jackman, Skyler L ; Beneduce, Brandon M ; Drew, Iain R ; Regehr, Wade G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-b906fc2437834cbe210e899539880e033654f24575dcf03b8639c9074bb9c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Channelrhodopsins</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Optogenetics - methods</topic><topic>Organ Culture Techniques</topic><topic>Synapses - chemistry</topic><topic>Synapses - genetics</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackman, Skyler L</creatorcontrib><creatorcontrib>Beneduce, Brandon M</creatorcontrib><creatorcontrib>Drew, Iain R</creatorcontrib><creatorcontrib>Regehr, Wade G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackman, Skyler L</au><au>Beneduce, Brandon M</au><au>Drew, Iain R</au><au>Regehr, Wade G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving high-frequency optical control of synaptic transmission</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-05-28</date><risdate>2014</risdate><volume>34</volume><issue>22</issue><spage>7704</spage><epage>7714</epage><pages>7704-7714</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24872574</pmid><doi>10.1523/JNEUROSCI.4694-13.2014</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2014-05, Vol.34 (22), p.7704-7714
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4035530
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adeno-associated virus
Animals
Channelrhodopsins
Female
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neuronal Plasticity - genetics
Neuronal Plasticity - physiology
Optogenetics - methods
Organ Culture Techniques
Synapses - chemistry
Synapses - genetics
Synapses - physiology
Synaptic Transmission - genetics
title Achieving high-frequency optical control of synaptic transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20high-frequency%20optical%20control%20of%20synaptic%20transmission&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Jackman,%20Skyler%20L&rft.date=2014-05-28&rft.volume=34&rft.issue=22&rft.spage=7704&rft.epage=7714&rft.pages=7704-7714&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4694-13.2014&rft_dat=%3Cproquest_pubme%3E1551615455%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530956392&rft_id=info:pmid/24872574&rfr_iscdi=true