Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans

DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2014-06, Vol.24 (6), p.954-962
Hauptverfasser: Roerink, Sophie F, van Schendel, Robin, Tijsterman, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 6
container_start_page 954
container_title Genome research
container_volume 24
creator Roerink, Sophie F
van Schendel, Robin
Tijsterman, Marcel
description DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.
doi_str_mv 10.1101/gr.170431.113
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531951774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</originalsourceid><addsrcrecordid>eNpVkU1PHDEMhqMKVLZLj1yrHLnMEk-SSXJBQtsvJEQ5gNRblMl6htDZZElmK_HvO9UAgovtV3702rIJOQG2AmBw1ucVKCY4TJJ_IAuQwlRSNOZgqpnWlWESjsinUh4YY1xo_ZEc1aIBYVSzIL9v0vC0xewK0vEeR1dtcRPciBuKcUMfUogh9jR1NONuCN6NIcXKlZL8TH29vqBtRven0BDpekVxwN7FckwOOzcU_Pycl-Tu-7fb9c_q6tePy_XFVeV5o3kFcqOFN53WSsrGG6O008yZKdY1axWHTilXNy1jjWoFMGyhFsbL2vvWc-RLcj777vbttLrHOGY32F0OW5efbHLBvu_EcG_79NcKxmstzWRw-myQ0-Mey2i3oXgcBhcx7YsFycFIUEpMaDWjPqdSMnavY4DZ_9-wfbbzNybJJ_7L291e6Zfz838JN4Vv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531951774</pqid></control><display><type>article</type><title>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Roerink, Sophie F ; van Schendel, Robin ; Tijsterman, Marcel</creator><creatorcontrib>Roerink, Sophie F ; van Schendel, Robin ; Tijsterman, Marcel</creatorcontrib><description>DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.170431.113</identifier><identifier>PMID: 24614976</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Polymerase theta ; DNA Replication ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Genome, Helminth ; Genomic Structural Variation</subject><ispartof>Genome research, 2014-06, Vol.24 (6), p.954-962</ispartof><rights>2014 Roerink et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</citedby><cites>FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24614976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roerink, Sophie F</creatorcontrib><creatorcontrib>van Schendel, Robin</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><title>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.</description><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA Polymerase theta</subject><subject>DNA Replication</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Genome, Helminth</subject><subject>Genomic Structural Variation</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PHDEMhqMKVLZLj1yrHLnMEk-SSXJBQtsvJEQ5gNRblMl6htDZZElmK_HvO9UAgovtV3702rIJOQG2AmBw1ucVKCY4TJJ_IAuQwlRSNOZgqpnWlWESjsinUh4YY1xo_ZEc1aIBYVSzIL9v0vC0xewK0vEeR1dtcRPciBuKcUMfUogh9jR1NONuCN6NIcXKlZL8TH29vqBtRven0BDpekVxwN7FckwOOzcU_Pycl-Tu-7fb9c_q6tePy_XFVeV5o3kFcqOFN53WSsrGG6O008yZKdY1axWHTilXNy1jjWoFMGyhFsbL2vvWc-RLcj777vbttLrHOGY32F0OW5efbHLBvu_EcG_79NcKxmstzWRw-myQ0-Mey2i3oXgcBhcx7YsFycFIUEpMaDWjPqdSMnavY4DZ_9-wfbbzNybJJ_7L291e6Zfz838JN4Vv</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Roerink, Sophie F</creator><creator>van Schendel, Robin</creator><creator>Tijsterman, Marcel</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140601</creationdate><title>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</title><author>Roerink, Sophie F ; van Schendel, Robin ; Tijsterman, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA Polymerase theta</topic><topic>DNA Replication</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Genome, Helminth</topic><topic>Genomic Structural Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roerink, Sophie F</creatorcontrib><creatorcontrib>van Schendel, Robin</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roerink, Sophie F</au><au>van Schendel, Robin</au><au>Tijsterman, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>24</volume><issue>6</issue><spage>954</spage><epage>962</epage><pages>954-962</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>24614976</pmid><doi>10.1101/gr.170431.113</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2014-06, Vol.24 (6), p.954-962
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032859
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
DNA Breaks, Double-Stranded
DNA End-Joining Repair
DNA Polymerase theta
DNA Replication
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
Genome, Helminth
Genomic Structural Variation
title Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymerase%20theta-mediated%20end%20joining%20of%20replication-associated%20DNA%20breaks%20in%20C.%20elegans&rft.jtitle=Genome%20research&rft.au=Roerink,%20Sophie%20F&rft.date=2014-06-01&rft.volume=24&rft.issue=6&rft.spage=954&rft.epage=962&rft.pages=954-962&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.170431.113&rft_dat=%3Cproquest_pubme%3E1531951774%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531951774&rft_id=info:pmid/24614976&rfr_iscdi=true