Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans
DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome se...
Gespeichert in:
Veröffentlicht in: | Genome research 2014-06, Vol.24 (6), p.954-962 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 962 |
---|---|
container_issue | 6 |
container_start_page | 954 |
container_title | Genome research |
container_volume | 24 |
creator | Roerink, Sophie F van Schendel, Robin Tijsterman, Marcel |
description | DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification. |
doi_str_mv | 10.1101/gr.170431.113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531951774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</originalsourceid><addsrcrecordid>eNpVkU1PHDEMhqMKVLZLj1yrHLnMEk-SSXJBQtsvJEQ5gNRblMl6htDZZElmK_HvO9UAgovtV3702rIJOQG2AmBw1ucVKCY4TJJ_IAuQwlRSNOZgqpnWlWESjsinUh4YY1xo_ZEc1aIBYVSzIL9v0vC0xewK0vEeR1dtcRPciBuKcUMfUogh9jR1NONuCN6NIcXKlZL8TH29vqBtRven0BDpekVxwN7FckwOOzcU_Pycl-Tu-7fb9c_q6tePy_XFVeV5o3kFcqOFN53WSsrGG6O008yZKdY1axWHTilXNy1jjWoFMGyhFsbL2vvWc-RLcj777vbttLrHOGY32F0OW5efbHLBvu_EcG_79NcKxmstzWRw-myQ0-Mey2i3oXgcBhcx7YsFycFIUEpMaDWjPqdSMnavY4DZ_9-wfbbzNybJJ_7L291e6Zfz838JN4Vv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531951774</pqid></control><display><type>article</type><title>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Roerink, Sophie F ; van Schendel, Robin ; Tijsterman, Marcel</creator><creatorcontrib>Roerink, Sophie F ; van Schendel, Robin ; Tijsterman, Marcel</creatorcontrib><description>DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.170431.113</identifier><identifier>PMID: 24614976</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Polymerase theta ; DNA Replication ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - metabolism ; Genome, Helminth ; Genomic Structural Variation</subject><ispartof>Genome research, 2014-06, Vol.24 (6), p.954-962</ispartof><rights>2014 Roerink et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</citedby><cites>FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24614976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roerink, Sophie F</creatorcontrib><creatorcontrib>van Schendel, Robin</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><title>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.</description><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA Polymerase theta</subject><subject>DNA Replication</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Genome, Helminth</subject><subject>Genomic Structural Variation</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PHDEMhqMKVLZLj1yrHLnMEk-SSXJBQtsvJEQ5gNRblMl6htDZZElmK_HvO9UAgovtV3702rIJOQG2AmBw1ucVKCY4TJJ_IAuQwlRSNOZgqpnWlWESjsinUh4YY1xo_ZEc1aIBYVSzIL9v0vC0xewK0vEeR1dtcRPciBuKcUMfUogh9jR1NONuCN6NIcXKlZL8TH29vqBtRven0BDpekVxwN7FckwOOzcU_Pycl-Tu-7fb9c_q6tePy_XFVeV5o3kFcqOFN53WSsrGG6O008yZKdY1axWHTilXNy1jjWoFMGyhFsbL2vvWc-RLcj777vbttLrHOGY32F0OW5efbHLBvu_EcG_79NcKxmstzWRw-myQ0-Mey2i3oXgcBhcx7YsFycFIUEpMaDWjPqdSMnavY4DZ_9-wfbbzNybJJ_7L291e6Zfz838JN4Vv</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Roerink, Sophie F</creator><creator>van Schendel, Robin</creator><creator>Tijsterman, Marcel</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140601</creationdate><title>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</title><author>Roerink, Sophie F ; van Schendel, Robin ; Tijsterman, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3683-15d84c9f887556c9978a80a98a8220b731f77a26b0067b410eb1249c52ccbc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA Polymerase theta</topic><topic>DNA Replication</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Genome, Helminth</topic><topic>Genomic Structural Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roerink, Sophie F</creatorcontrib><creatorcontrib>van Schendel, Robin</creatorcontrib><creatorcontrib>Tijsterman, Marcel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roerink, Sophie F</au><au>van Schendel, Robin</au><au>Tijsterman, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>24</volume><issue>6</issue><spage>954</spage><epage>962</epage><pages>954-962</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>DNA lesions that block replication fork progression are drivers of cancer-associated genome alterations, but the error-prone DNA repair mechanisms acting on collapsed replication are incompletely understood, and their contribution to genome evolution largely unexplored. Here, through whole-genome sequencing of animal populations that were clonally propagated for more than 50 generations, we identify a distinct class of deletions that spontaneously accumulate in C. elegans strains lacking translesion synthesis (TLS) polymerases. Emerging DNA double-strand breaks are repaired via an error-prone mechanism in which the outermost nucleotide of one end serves to prime DNA synthesis on the other end. This pathway critically depends on the A-family polymerase theta, which protects the genome against gross chromosomal rearrangements. By comparing the genomes of isolates of C. elegans from different geographical regions, we found that in fact most spontaneously evolving structural variations match the signature of polymerase theta-mediated end joining (TMEJ), illustrating that this pathway is an important source of genetic diversification.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>24614976</pmid><doi>10.1101/gr.170431.113</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2014-06, Vol.24 (6), p.954-962 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032859 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism DNA Breaks, Double-Stranded DNA End-Joining Repair DNA Polymerase theta DNA Replication DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - metabolism Genome, Helminth Genomic Structural Variation |
title | Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymerase%20theta-mediated%20end%20joining%20of%20replication-associated%20DNA%20breaks%20in%20C.%20elegans&rft.jtitle=Genome%20research&rft.au=Roerink,%20Sophie%20F&rft.date=2014-06-01&rft.volume=24&rft.issue=6&rft.spage=954&rft.epage=962&rft.pages=954-962&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.170431.113&rft_dat=%3Cproquest_pubme%3E1531951774%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531951774&rft_id=info:pmid/24614976&rfr_iscdi=true |