Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries
All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, ch...
Gespeichert in:
Veröffentlicht in: | ACS combinatorial science 2014-02, Vol.16 (2), p.53-65 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 2 |
container_start_page | 53 |
container_title | ACS combinatorial science |
container_volume | 16 |
creator | Anderson, Assaf Y Bouhadana, Yaniv Barad, Hannah-Noa Kupfer, Benjamin Rosh-Hodesh, Eli Aviv, Hagit Tischler, Yaakov R Rühle, Sven Zaban, Arie |
description | All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu–O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu–O compounds. |
doi_str_mv | 10.1021/co3001583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4026971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753499436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-cb55b9a22ceaaa2cbfe58b78d962a42e928c69a86ca9556fb56729448b2f44cb3</originalsourceid><addsrcrecordid>eNqNks2OFCEURonROJNxFr6AYWOii9KCAqpwYdK240_SSWvUNblQVA-TKmiB6tg79y59Q59EJj12NDFRFkDC4YR7-RC6T-onpKbkqQlNXRPeNbfQKSVcVJ1k7PZxz-kJOk_pqi6DMUlFfRedUMZI3Yj2FH17P4PP84QvhsEZZ73ZY_A9flGmDWzxwsO4Ty7hIUS8DJN2HnKIDkb87jLksAtjBmfSM_whxOz8Bi9MdjuX9zgMeDn_-Pp9fX1vG2bfJ-w8Xoxjtf7ieotf2p0zFq-cjhCdTffQnQHGZM9v1jP06dXFx-WbarV-_Xa5WFXAmzZXRnOuJVBqLABQowfLO912vRQUGLWSdkZI6IQBybkYNBctLT3pNB0YM7o5Q88P3u2sJ9sb63OEUW2jmyDuVQCn_jzx7lJtwk6xmgrZkiJ4dCOI4fNsU1aTS8aOI3gb5qRIyxsmJWvEv1HOCOOCkf-wFiWhvOvagj4-oCaGlKIdjo8ntbpOhTqmorAPfq_2SP7KQAEeHgAwSV2FOZYvT38R_QTPVcCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499125887</pqid></control><display><type>article</type><title>Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries</title><source>ACS Publications</source><source>MEDLINE</source><creator>Anderson, Assaf Y ; Bouhadana, Yaniv ; Barad, Hannah-Noa ; Kupfer, Benjamin ; Rosh-Hodesh, Eli ; Aviv, Hagit ; Tischler, Yaakov R ; Rühle, Sven ; Zaban, Arie</creator><creatorcontrib>Anderson, Assaf Y ; Bouhadana, Yaniv ; Barad, Hannah-Noa ; Kupfer, Benjamin ; Rosh-Hodesh, Eli ; Aviv, Hagit ; Tischler, Yaakov R ; Rühle, Sven ; Zaban, Arie</creatorcontrib><description>All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu–O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu–O compounds.</description><identifier>ISSN: 2156-8952</identifier><identifier>EISSN: 2156-8944</identifier><identifier>DOI: 10.1021/co3001583</identifier><identifier>PMID: 24410367</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ACTIVITY ; Charge ; Combinatorial analysis ; Combinatorial Chemistry Techniques - methods ; Copper ; Copper - chemistry ; COPPER OXIDE ; Devices ; ELECTRONIC PRODUCTS ; Lasers ; MATHEMATICAL ANALYSIS ; OXIDES ; Oxides - chemistry ; Photochemical Processes ; Photovoltaic cells ; Quantum efficiency ; Quantum Theory ; Solar cells ; TITANIUM DIOXIDE</subject><ispartof>ACS combinatorial science, 2014-02, Vol.16 (2), p.53-65</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-cb55b9a22ceaaa2cbfe58b78d962a42e928c69a86ca9556fb56729448b2f44cb3</citedby><cites>FETCH-LOGICAL-a537t-cb55b9a22ceaaa2cbfe58b78d962a42e928c69a86ca9556fb56729448b2f44cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/co3001583$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/co3001583$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24410367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Assaf Y</creatorcontrib><creatorcontrib>Bouhadana, Yaniv</creatorcontrib><creatorcontrib>Barad, Hannah-Noa</creatorcontrib><creatorcontrib>Kupfer, Benjamin</creatorcontrib><creatorcontrib>Rosh-Hodesh, Eli</creatorcontrib><creatorcontrib>Aviv, Hagit</creatorcontrib><creatorcontrib>Tischler, Yaakov R</creatorcontrib><creatorcontrib>Rühle, Sven</creatorcontrib><creatorcontrib>Zaban, Arie</creatorcontrib><title>Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries</title><title>ACS combinatorial science</title><addtitle>ACS Comb. Sci</addtitle><description>All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu–O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu–O compounds.</description><subject>ACTIVITY</subject><subject>Charge</subject><subject>Combinatorial analysis</subject><subject>Combinatorial Chemistry Techniques - methods</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>COPPER OXIDE</subject><subject>Devices</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Lasers</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>OXIDES</subject><subject>Oxides - chemistry</subject><subject>Photochemical Processes</subject><subject>Photovoltaic cells</subject><subject>Quantum efficiency</subject><subject>Quantum Theory</subject><subject>Solar cells</subject><subject>TITANIUM DIOXIDE</subject><issn>2156-8952</issn><issn>2156-8944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqNks2OFCEURonROJNxFr6AYWOii9KCAqpwYdK240_SSWvUNblQVA-TKmiB6tg79y59Q59EJj12NDFRFkDC4YR7-RC6T-onpKbkqQlNXRPeNbfQKSVcVJ1k7PZxz-kJOk_pqi6DMUlFfRedUMZI3Yj2FH17P4PP84QvhsEZZ73ZY_A9flGmDWzxwsO4Ty7hIUS8DJN2HnKIDkb87jLksAtjBmfSM_whxOz8Bi9MdjuX9zgMeDn_-Pp9fX1vG2bfJ-w8Xoxjtf7ieotf2p0zFq-cjhCdTffQnQHGZM9v1jP06dXFx-WbarV-_Xa5WFXAmzZXRnOuJVBqLABQowfLO912vRQUGLWSdkZI6IQBybkYNBctLT3pNB0YM7o5Q88P3u2sJ9sb63OEUW2jmyDuVQCn_jzx7lJtwk6xmgrZkiJ4dCOI4fNsU1aTS8aOI3gb5qRIyxsmJWvEv1HOCOOCkf-wFiWhvOvagj4-oCaGlKIdjo8ntbpOhTqmorAPfq_2SP7KQAEeHgAwSV2FOZYvT38R_QTPVcCA</recordid><startdate>20140210</startdate><enddate>20140210</enddate><creator>Anderson, Assaf Y</creator><creator>Bouhadana, Yaniv</creator><creator>Barad, Hannah-Noa</creator><creator>Kupfer, Benjamin</creator><creator>Rosh-Hodesh, Eli</creator><creator>Aviv, Hagit</creator><creator>Tischler, Yaakov R</creator><creator>Rühle, Sven</creator><creator>Zaban, Arie</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>8BQ</scope><scope>5PM</scope></search><sort><creationdate>20140210</creationdate><title>Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries</title><author>Anderson, Assaf Y ; Bouhadana, Yaniv ; Barad, Hannah-Noa ; Kupfer, Benjamin ; Rosh-Hodesh, Eli ; Aviv, Hagit ; Tischler, Yaakov R ; Rühle, Sven ; Zaban, Arie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-cb55b9a22ceaaa2cbfe58b78d962a42e928c69a86ca9556fb56729448b2f44cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACTIVITY</topic><topic>Charge</topic><topic>Combinatorial analysis</topic><topic>Combinatorial Chemistry Techniques - methods</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>COPPER OXIDE</topic><topic>Devices</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Lasers</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>OXIDES</topic><topic>Oxides - chemistry</topic><topic>Photochemical Processes</topic><topic>Photovoltaic cells</topic><topic>Quantum efficiency</topic><topic>Quantum Theory</topic><topic>Solar cells</topic><topic>TITANIUM DIOXIDE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Assaf Y</creatorcontrib><creatorcontrib>Bouhadana, Yaniv</creatorcontrib><creatorcontrib>Barad, Hannah-Noa</creatorcontrib><creatorcontrib>Kupfer, Benjamin</creatorcontrib><creatorcontrib>Rosh-Hodesh, Eli</creatorcontrib><creatorcontrib>Aviv, Hagit</creatorcontrib><creatorcontrib>Tischler, Yaakov R</creatorcontrib><creatorcontrib>Rühle, Sven</creatorcontrib><creatorcontrib>Zaban, Arie</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS combinatorial science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Assaf Y</au><au>Bouhadana, Yaniv</au><au>Barad, Hannah-Noa</au><au>Kupfer, Benjamin</au><au>Rosh-Hodesh, Eli</au><au>Aviv, Hagit</au><au>Tischler, Yaakov R</au><au>Rühle, Sven</au><au>Zaban, Arie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries</atitle><jtitle>ACS combinatorial science</jtitle><addtitle>ACS Comb. Sci</addtitle><date>2014-02-10</date><risdate>2014</risdate><volume>16</volume><issue>2</issue><spage>53</spage><epage>65</epage><pages>53-65</pages><issn>2156-8952</issn><eissn>2156-8944</eissn><abstract>All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu–O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu–O compounds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24410367</pmid><doi>10.1021/co3001583</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-8952 |
ispartof | ACS combinatorial science, 2014-02, Vol.16 (2), p.53-65 |
issn | 2156-8952 2156-8944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4026971 |
source | ACS Publications; MEDLINE |
subjects | ACTIVITY Charge Combinatorial analysis Combinatorial Chemistry Techniques - methods Copper Copper - chemistry COPPER OXIDE Devices ELECTRONIC PRODUCTS Lasers MATHEMATICAL ANALYSIS OXIDES Oxides - chemistry Photochemical Processes Photovoltaic cells Quantum efficiency Quantum Theory Solar cells TITANIUM DIOXIDE |
title | Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Efficiency%20and%20Bandgap%20Analysis%20for%20Combinatorial%20Photovoltaics:%20Sorting%20Activity%20of%20Cu%E2%80%93O%20Compounds%20in%20All-Oxide%20Device%20Libraries&rft.jtitle=ACS%20combinatorial%20science&rft.au=Anderson,%20Assaf%20Y&rft.date=2014-02-10&rft.volume=16&rft.issue=2&rft.spage=53&rft.epage=65&rft.pages=53-65&rft.issn=2156-8952&rft.eissn=2156-8944&rft_id=info:doi/10.1021/co3001583&rft_dat=%3Cproquest_pubme%3E1753499436%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499125887&rft_id=info:pmid/24410367&rfr_iscdi=true |