Phenotypic analysis of a family of transcriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata

Candida glabrata is the second most important human fungal pathogen. Despite its formal name, C. glabrata is in fact more closely related to the nonpathogenic budding yeast Saccharomyces cerevisiae. However, less is known about the biology of this pathogen. Zinc cluster proteins form a large family...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2014-05, Vol.4 (5), p.931-940
Hauptverfasser: Klimova, Natalia, Yeung, Ralph, Kachurina, Nadezda, Turcotte, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Candida glabrata is the second most important human fungal pathogen. Despite its formal name, C. glabrata is in fact more closely related to the nonpathogenic budding yeast Saccharomyces cerevisiae. However, less is known about the biology of this pathogen. Zinc cluster proteins form a large family of transcriptional regulators involved in the regulation of numerous processes such as the control of the metabolism of sugars, amino acids, fatty acids, as well as drug resistance. The C. glabrata genome encodes 41 known or putative zinc cluster proteins, and the majority of them are uncharacterized. We have generated a panel of strains carrying individual deletions of zinc cluster genes. Using a novel approach relying on tetracycline for conditional expression in C. glabrata at the translational level, we show that only two zinc cluster genes are essential. We have performed phenotypic analysis of nonessential zinc cluster genes. Our results show that two deletion strains are thermosensitive whereas two strains are sensitive to caffeine, an inhibitor of the target of rapamycin pathway. Increased salt tolerance has been observed for eight deletion strains, whereas one strain showed reduced tolerance to salt. We have also identified a number of strains with increased susceptibility to the antifungal drugs fluconazole and ketoconazole. Interestingly, one deletion strain showed decreased susceptibility to the antifungal micafungin. In summary, we have assigned phenotypes to more than half of the zinc cluster genes in C. glabrata. Our study provides a resource that will be useful to better understand the biological role of these transcription factors.
ISSN:2160-1836
2160-1836
DOI:10.1534/g3.113.010199