Bioinformatics Analysis of Alternative Polyadenylation in Green Alga Chlamydomonas reinhardtii Using Transcriptome Sequences from Three Different Sequencing Platforms
Abstract Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The...
Gespeichert in:
Veröffentlicht in: | G3 : genes - genomes - genetics 2014-05, Vol.4 (5), p.871-883 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 883 |
---|---|
container_issue | 5 |
container_start_page | 871 |
container_title | G3 : genes - genomes - genetics |
container_volume | 4 |
creator | Zhao, Zhixin Wu, Xiaohui Kumar, Praveen Kumar Raj Dong, Min Ji, Guoli Li, Qingshun Quinn Liang, Chun |
description | Abstract
Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of sequencing data for us to explore the variations of poly(A) signals, alternative polyadenylation (APA), and its relationship with splicing in this algal species. Through genome-wide analysis of poly(A) sites in C. reinhardtii, we identified a large number of poly(A) sites: 21,041 from Sanger expressed sequence tags, 88,184 from 454, and 195,266 from Illumina sequence reads. In comparison with previous collections, more new poly(A) sites are found in coding sequences and intron and intergenic regions by deep-sequencing. Interestingly, G-rich signals are particularly abundant in intron and intergenic regions. The prevalence of different poly(A) signals between coding sequences and a 3′-untranslated region implies potentially different polyadenylation mechanisms. Our data suggest that the APA occurs in about 68% of C. reinhardtii genes. Using Gene Ontolgy analysis, we found most of the APA genes are involved in RNA regulation and metabolic process, protein synthesis, hydrolase, and ligase activities. Moreover, intronic poly(A) sites are more abundant in constitutively spliced introns than retained introns, suggesting an interplay between polyadenylation and splicing. Our results support that APA, as in higher eukaryotes, may play significant roles in increasing transcriptome diversity and gene expression regulation in this algal species. Our datasets also provide useful information for accurate annotation of transcript ends in C. reinhardtii. |
doi_str_mv | 10.1534/g3.114.010249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4025486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1534/g3.114.010249</oup_id><sourcerecordid>1526128979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-1f67de94f237fd57ed70f9e97004777dfb41917fbcf2624661368c0c4e9f6ca13</originalsourceid><addsrcrecordid>eNqFUcFu3CAUtKpGSZTmmGvFsRdvAWMwl0rbTZtWitRI2ZwRix9eKgxb8EbyD_U7y2qTND2Vy4P3hpl5mqq6InhB2oZ9HJoFIWyBCaZMvqnOKeG4Jl3D3766n1WXOf_E5bQt54yfVmeUccpp151Xvz-76IKNadSTMxktg_ZzdhlFi5Z-ghRK_xHQXfSz7iHMvrxjQC6gmwQQCmjQaLX1epz7OMagM0rgwlanfnIOPWQXBrROOmST3G6KI6B7-LWHYCAjm-KI1ttChK6dtZAgTM_jw7-7onbwlt9VJ1b7DJdP9aJ6-PplvfpW3_64-b5a3taGSTzVxHLRg2SWNsL2rYBeYCtBCoyZEKK3G0YkEXZjbNmfcU4a3hlsGEjLjSbNRfXpyLvbb0boTfGTtFe75EadZhW1U_9OgtuqIT4qhmnLOl4IPjwRpFjWyJMaXTbgvQ4Q91mRlnJCOylkgdZHqEkx5wT2RYZgdYhXDY0q8apjvAX__rW3F_RzmH-14373H64_Axuxow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526128979</pqid></control><display><type>article</type><title>Bioinformatics Analysis of Alternative Polyadenylation in Green Alga Chlamydomonas reinhardtii Using Transcriptome Sequences from Three Different Sequencing Platforms</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>TestCollectionTL3OpenAccess</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zhao, Zhixin ; Wu, Xiaohui ; Kumar, Praveen Kumar Raj ; Dong, Min ; Ji, Guoli ; Li, Qingshun Quinn ; Liang, Chun</creator><creatorcontrib>Zhao, Zhixin ; Wu, Xiaohui ; Kumar, Praveen Kumar Raj ; Dong, Min ; Ji, Guoli ; Li, Qingshun Quinn ; Liang, Chun</creatorcontrib><description>Abstract
Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of sequencing data for us to explore the variations of poly(A) signals, alternative polyadenylation (APA), and its relationship with splicing in this algal species. Through genome-wide analysis of poly(A) sites in C. reinhardtii, we identified a large number of poly(A) sites: 21,041 from Sanger expressed sequence tags, 88,184 from 454, and 195,266 from Illumina sequence reads. In comparison with previous collections, more new poly(A) sites are found in coding sequences and intron and intergenic regions by deep-sequencing. Interestingly, G-rich signals are particularly abundant in intron and intergenic regions. The prevalence of different poly(A) signals between coding sequences and a 3′-untranslated region implies potentially different polyadenylation mechanisms. Our data suggest that the APA occurs in about 68% of C. reinhardtii genes. Using Gene Ontolgy analysis, we found most of the APA genes are involved in RNA regulation and metabolic process, protein synthesis, hydrolase, and ligase activities. Moreover, intronic poly(A) sites are more abundant in constitutively spliced introns than retained introns, suggesting an interplay between polyadenylation and splicing. Our results support that APA, as in higher eukaryotes, may play significant roles in increasing transcriptome diversity and gene expression regulation in this algal species. Our datasets also provide useful information for accurate annotation of transcript ends in C. reinhardtii.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1534/g3.114.010249</identifier><identifier>PMID: 24626288</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Alternative Splicing ; Chlamydomonas reinhardtii - genetics ; Computational Biology ; Datasets as Topic ; Gene Expression Regulation, Plant ; Genome, Plant ; High-Throughput Nucleotide Sequencing - methods ; Introns ; Investigations ; Open Reading Frames ; Poly A ; Polyadenylation - genetics ; Polymorphism, Single Nucleotide ; Transcription, Genetic ; Transcriptome</subject><ispartof>G3 : genes - genomes - genetics, 2014-05, Vol.4 (5), p.871-883</ispartof><rights>2014 Zhao et al. 2014</rights><rights>Copyright © 2014 Zhao et al.</rights><rights>Copyright © 2014 Zhao 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-1f67de94f237fd57ed70f9e97004777dfb41917fbcf2624661368c0c4e9f6ca13</citedby><cites>FETCH-LOGICAL-c490t-1f67de94f237fd57ed70f9e97004777dfb41917fbcf2624661368c0c4e9f6ca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025486/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025486/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24626288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhixin</creatorcontrib><creatorcontrib>Wu, Xiaohui</creatorcontrib><creatorcontrib>Kumar, Praveen Kumar Raj</creatorcontrib><creatorcontrib>Dong, Min</creatorcontrib><creatorcontrib>Ji, Guoli</creatorcontrib><creatorcontrib>Li, Qingshun Quinn</creatorcontrib><creatorcontrib>Liang, Chun</creatorcontrib><title>Bioinformatics Analysis of Alternative Polyadenylation in Green Alga Chlamydomonas reinhardtii Using Transcriptome Sequences from Three Different Sequencing Platforms</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract
Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of sequencing data for us to explore the variations of poly(A) signals, alternative polyadenylation (APA), and its relationship with splicing in this algal species. Through genome-wide analysis of poly(A) sites in C. reinhardtii, we identified a large number of poly(A) sites: 21,041 from Sanger expressed sequence tags, 88,184 from 454, and 195,266 from Illumina sequence reads. In comparison with previous collections, more new poly(A) sites are found in coding sequences and intron and intergenic regions by deep-sequencing. Interestingly, G-rich signals are particularly abundant in intron and intergenic regions. The prevalence of different poly(A) signals between coding sequences and a 3′-untranslated region implies potentially different polyadenylation mechanisms. Our data suggest that the APA occurs in about 68% of C. reinhardtii genes. Using Gene Ontolgy analysis, we found most of the APA genes are involved in RNA regulation and metabolic process, protein synthesis, hydrolase, and ligase activities. Moreover, intronic poly(A) sites are more abundant in constitutively spliced introns than retained introns, suggesting an interplay between polyadenylation and splicing. Our results support that APA, as in higher eukaryotes, may play significant roles in increasing transcriptome diversity and gene expression regulation in this algal species. Our datasets also provide useful information for accurate annotation of transcript ends in C. reinhardtii.</description><subject>Alternative Splicing</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Computational Biology</subject><subject>Datasets as Topic</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genome, Plant</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Introns</subject><subject>Investigations</subject><subject>Open Reading Frames</subject><subject>Poly A</subject><subject>Polyadenylation - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Transcription, Genetic</subject><subject>Transcriptome</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFu3CAUtKpGSZTmmGvFsRdvAWMwl0rbTZtWitRI2ZwRix9eKgxb8EbyD_U7y2qTND2Vy4P3hpl5mqq6InhB2oZ9HJoFIWyBCaZMvqnOKeG4Jl3D3766n1WXOf_E5bQt54yfVmeUccpp151Xvz-76IKNadSTMxktg_ZzdhlFi5Z-ghRK_xHQXfSz7iHMvrxjQC6gmwQQCmjQaLX1epz7OMagM0rgwlanfnIOPWQXBrROOmST3G6KI6B7-LWHYCAjm-KI1ttChK6dtZAgTM_jw7-7onbwlt9VJ1b7DJdP9aJ6-PplvfpW3_64-b5a3taGSTzVxHLRg2SWNsL2rYBeYCtBCoyZEKK3G0YkEXZjbNmfcU4a3hlsGEjLjSbNRfXpyLvbb0boTfGTtFe75EadZhW1U_9OgtuqIT4qhmnLOl4IPjwRpFjWyJMaXTbgvQ4Q91mRlnJCOylkgdZHqEkx5wT2RYZgdYhXDY0q8apjvAX__rW3F_RzmH-14373H64_Axuxow</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Zhao, Zhixin</creator><creator>Wu, Xiaohui</creator><creator>Kumar, Praveen Kumar Raj</creator><creator>Dong, Min</creator><creator>Ji, Guoli</creator><creator>Li, Qingshun Quinn</creator><creator>Liang, Chun</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140501</creationdate><title>Bioinformatics Analysis of Alternative Polyadenylation in Green Alga Chlamydomonas reinhardtii Using Transcriptome Sequences from Three Different Sequencing Platforms</title><author>Zhao, Zhixin ; Wu, Xiaohui ; Kumar, Praveen Kumar Raj ; Dong, Min ; Ji, Guoli ; Li, Qingshun Quinn ; Liang, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-1f67de94f237fd57ed70f9e97004777dfb41917fbcf2624661368c0c4e9f6ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative Splicing</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Computational Biology</topic><topic>Datasets as Topic</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genome, Plant</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Introns</topic><topic>Investigations</topic><topic>Open Reading Frames</topic><topic>Poly A</topic><topic>Polyadenylation - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Transcription, Genetic</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhixin</creatorcontrib><creatorcontrib>Wu, Xiaohui</creatorcontrib><creatorcontrib>Kumar, Praveen Kumar Raj</creatorcontrib><creatorcontrib>Dong, Min</creatorcontrib><creatorcontrib>Ji, Guoli</creatorcontrib><creatorcontrib>Li, Qingshun Quinn</creatorcontrib><creatorcontrib>Liang, Chun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhixin</au><au>Wu, Xiaohui</au><au>Kumar, Praveen Kumar Raj</au><au>Dong, Min</au><au>Ji, Guoli</au><au>Li, Qingshun Quinn</au><au>Liang, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatics Analysis of Alternative Polyadenylation in Green Alga Chlamydomonas reinhardtii Using Transcriptome Sequences from Three Different Sequencing Platforms</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>4</volume><issue>5</issue><spage>871</spage><epage>883</epage><pages>871-883</pages><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract
Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of sequencing data for us to explore the variations of poly(A) signals, alternative polyadenylation (APA), and its relationship with splicing in this algal species. Through genome-wide analysis of poly(A) sites in C. reinhardtii, we identified a large number of poly(A) sites: 21,041 from Sanger expressed sequence tags, 88,184 from 454, and 195,266 from Illumina sequence reads. In comparison with previous collections, more new poly(A) sites are found in coding sequences and intron and intergenic regions by deep-sequencing. Interestingly, G-rich signals are particularly abundant in intron and intergenic regions. The prevalence of different poly(A) signals between coding sequences and a 3′-untranslated region implies potentially different polyadenylation mechanisms. Our data suggest that the APA occurs in about 68% of C. reinhardtii genes. Using Gene Ontolgy analysis, we found most of the APA genes are involved in RNA regulation and metabolic process, protein synthesis, hydrolase, and ligase activities. Moreover, intronic poly(A) sites are more abundant in constitutively spliced introns than retained introns, suggesting an interplay between polyadenylation and splicing. Our results support that APA, as in higher eukaryotes, may play significant roles in increasing transcriptome diversity and gene expression regulation in this algal species. Our datasets also provide useful information for accurate annotation of transcript ends in C. reinhardtii.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>24626288</pmid><doi>10.1534/g3.114.010249</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-1836 |
ispartof | G3 : genes - genomes - genetics, 2014-05, Vol.4 (5), p.871-883 |
issn | 2160-1836 2160-1836 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4025486 |
source | Oxford Journals Open Access Collection; MEDLINE; TestCollectionTL3OpenAccess; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Alternative Splicing Chlamydomonas reinhardtii - genetics Computational Biology Datasets as Topic Gene Expression Regulation, Plant Genome, Plant High-Throughput Nucleotide Sequencing - methods Introns Investigations Open Reading Frames Poly A Polyadenylation - genetics Polymorphism, Single Nucleotide Transcription, Genetic Transcriptome |
title | Bioinformatics Analysis of Alternative Polyadenylation in Green Alga Chlamydomonas reinhardtii Using Transcriptome Sequences from Three Different Sequencing Platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatics%20Analysis%20of%20Alternative%20Polyadenylation%20in%20Green%20Alga%20Chlamydomonas%20reinhardtii%20Using%20Transcriptome%20Sequences%20from%20Three%20Different%20Sequencing%20Platforms&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Zhao,%20Zhixin&rft.date=2014-05-01&rft.volume=4&rft.issue=5&rft.spage=871&rft.epage=883&rft.pages=871-883&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1534/g3.114.010249&rft_dat=%3Cproquest_pubme%3E1526128979%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526128979&rft_id=info:pmid/24626288&rft_oup_id=10.1534/g3.114.010249&rfr_iscdi=true |