Effect of the Heat Pipe Adiabatic Region

The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2014-04, Vol.136 (4), p.0429011-4290110
Hauptverfasser: Brahim, Taoufik, Jemni, Abdelmajid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4290110
container_issue 4
container_start_page 0429011
container_title Journal of heat transfer
container_volume 136
creator Brahim, Taoufik
Jemni, Abdelmajid
description The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.
doi_str_mv 10.1115/1.4025132
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826595505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTg2dBehHmoTNvPtr0IowxnTBQRM8hTZMt0o_ZtIL_vR2rU0-ecnh_PLx5XoTOAU8AgN_AhGHCgZIDNARORCgSRg_REGNCQmACBujE-zeMgVKWHKMBYSLhLIqHaDy31ugmqGzQrE2wMKoJntzGBNPMqVQ1TgfPZuWq8hQdWZV7c9a_I_R6N3-ZLcLl4_3DbLoMFeOiCa0hFmsONqEMIDJWiSjlAnAai24gSKY5TQlLY5oZongswKpEZBnV2saJpSN0u8vdtGlhMm3Kpla53NSuUPWnrJSTfyelW8tV9SG7CqhgcRcw7gPq6r01vpGF89rkuSpN1XoJgkQ84Rzz_2kcY4q7hklHr3dU15X3tbH7jQDL7REkyP4Inb38_YW9_G69A1c9UF6r3Naq1M7_OMEJCLF1FzunfGHkW9XWZVe9pElEOaNfAGKVZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770301152</pqid></control><display><type>article</type><title>Effect of the Heat Pipe Adiabatic Region</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Brahim, Taoufik ; Jemni, Abdelmajid</creator><creatorcontrib>Brahim, Taoufik ; Jemni, Abdelmajid</creatorcontrib><description>The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4025132</identifier><identifier>PMID: 24895467</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Adiabatic flow ; Applied sciences ; Boundaries ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; Heat pipes ; Heat transfer ; Inertial ; Mathematical models ; Research Papers ; Temperature gradient ; Two-Phase Flow and Heat Transfer</subject><ispartof>Journal of heat transfer, 2014-04, Vol.136 (4), p.0429011-4290110</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 by ASME 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</citedby><cites>FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28521887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24895467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahim, Taoufik</creatorcontrib><creatorcontrib>Jemni, Abdelmajid</creatorcontrib><title>Effect of the Heat Pipe Adiabatic Region</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><addtitle>J Heat Transfer</addtitle><description>The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Inertial</subject><subject>Mathematical models</subject><subject>Research Papers</subject><subject>Temperature gradient</subject><subject>Two-Phase Flow and Heat Transfer</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0c1LwzAYBvAgipvTg2dBehHmoTNvPtr0IowxnTBQRM8hTZMt0o_ZtIL_vR2rU0-ecnh_PLx5XoTOAU8AgN_AhGHCgZIDNARORCgSRg_REGNCQmACBujE-zeMgVKWHKMBYSLhLIqHaDy31ugmqGzQrE2wMKoJntzGBNPMqVQ1TgfPZuWq8hQdWZV7c9a_I_R6N3-ZLcLl4_3DbLoMFeOiCa0hFmsONqEMIDJWiSjlAnAai24gSKY5TQlLY5oZongswKpEZBnV2saJpSN0u8vdtGlhMm3Kpla53NSuUPWnrJSTfyelW8tV9SG7CqhgcRcw7gPq6r01vpGF89rkuSpN1XoJgkQ84Rzz_2kcY4q7hklHr3dU15X3tbH7jQDL7REkyP4Inb38_YW9_G69A1c9UF6r3Naq1M7_OMEJCLF1FzunfGHkW9XWZVe9pElEOaNfAGKVZg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Brahim, Taoufik</creator><creator>Jemni, Abdelmajid</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Effect of the Heat Pipe Adiabatic Region</title><author>Brahim, Taoufik ; Jemni, Abdelmajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Inertial</topic><topic>Mathematical models</topic><topic>Research Papers</topic><topic>Temperature gradient</topic><topic>Two-Phase Flow and Heat Transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahim, Taoufik</creatorcontrib><creatorcontrib>Jemni, Abdelmajid</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahim, Taoufik</au><au>Jemni, Abdelmajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Heat Pipe Adiabatic Region</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><addtitle>J Heat Transfer</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>136</volume><issue>4</issue><spage>0429011</spage><epage>4290110</epage><pages>0429011-4290110</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>24895467</pmid><doi>10.1115/1.4025132</doi><tpages>3861100</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2014-04, Vol.136 (4), p.0429011-4290110
issn 0022-1481
1528-8943
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023847
source ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Adiabatic flow
Applied sciences
Boundaries
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid flow
Heat pipes
Heat transfer
Inertial
Mathematical models
Research Papers
Temperature gradient
Two-Phase Flow and Heat Transfer
title Effect of the Heat Pipe Adiabatic Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Heat%20Pipe%20Adiabatic%20Region&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Brahim,%20Taoufik&rft.date=2014-04-01&rft.volume=136&rft.issue=4&rft.spage=0429011&rft.epage=4290110&rft.pages=0429011-4290110&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4025132&rft_dat=%3Cproquest_pubme%3E1826595505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770301152&rft_id=info:pmid/24895467&rfr_iscdi=true