Effect of the Heat Pipe Adiabatic Region
The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model f...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2014-04, Vol.136 (4), p.0429011-4290110 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4290110 |
---|---|
container_issue | 4 |
container_start_page | 0429011 |
container_title | Journal of heat transfer |
container_volume | 136 |
creator | Brahim, Taoufik Jemni, Abdelmajid |
description | The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. |
doi_str_mv | 10.1115/1.4025132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826595505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTg2dBehHmoTNvPtr0IowxnTBQRM8hTZMt0o_ZtIL_vR2rU0-ecnh_PLx5XoTOAU8AgN_AhGHCgZIDNARORCgSRg_REGNCQmACBujE-zeMgVKWHKMBYSLhLIqHaDy31ugmqGzQrE2wMKoJntzGBNPMqVQ1TgfPZuWq8hQdWZV7c9a_I_R6N3-ZLcLl4_3DbLoMFeOiCa0hFmsONqEMIDJWiSjlAnAai24gSKY5TQlLY5oZongswKpEZBnV2saJpSN0u8vdtGlhMm3Kpla53NSuUPWnrJSTfyelW8tV9SG7CqhgcRcw7gPq6r01vpGF89rkuSpN1XoJgkQ84Rzz_2kcY4q7hklHr3dU15X3tbH7jQDL7REkyP4Inb38_YW9_G69A1c9UF6r3Naq1M7_OMEJCLF1FzunfGHkW9XWZVe9pElEOaNfAGKVZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770301152</pqid></control><display><type>article</type><title>Effect of the Heat Pipe Adiabatic Region</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Brahim, Taoufik ; Jemni, Abdelmajid</creator><creatorcontrib>Brahim, Taoufik ; Jemni, Abdelmajid</creatorcontrib><description>The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4025132</identifier><identifier>PMID: 24895467</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Adiabatic flow ; Applied sciences ; Boundaries ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; Heat pipes ; Heat transfer ; Inertial ; Mathematical models ; Research Papers ; Temperature gradient ; Two-Phase Flow and Heat Transfer</subject><ispartof>Journal of heat transfer, 2014-04, Vol.136 (4), p.0429011-4290110</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 by ASME 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</citedby><cites>FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28521887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24895467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahim, Taoufik</creatorcontrib><creatorcontrib>Jemni, Abdelmajid</creatorcontrib><title>Effect of the Heat Pipe Adiabatic Region</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><addtitle>J Heat Transfer</addtitle><description>The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Inertial</subject><subject>Mathematical models</subject><subject>Research Papers</subject><subject>Temperature gradient</subject><subject>Two-Phase Flow and Heat Transfer</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0c1LwzAYBvAgipvTg2dBehHmoTNvPtr0IowxnTBQRM8hTZMt0o_ZtIL_vR2rU0-ecnh_PLx5XoTOAU8AgN_AhGHCgZIDNARORCgSRg_REGNCQmACBujE-zeMgVKWHKMBYSLhLIqHaDy31ugmqGzQrE2wMKoJntzGBNPMqVQ1TgfPZuWq8hQdWZV7c9a_I_R6N3-ZLcLl4_3DbLoMFeOiCa0hFmsONqEMIDJWiSjlAnAai24gSKY5TQlLY5oZongswKpEZBnV2saJpSN0u8vdtGlhMm3Kpla53NSuUPWnrJSTfyelW8tV9SG7CqhgcRcw7gPq6r01vpGF89rkuSpN1XoJgkQ84Rzz_2kcY4q7hklHr3dU15X3tbH7jQDL7REkyP4Inb38_YW9_G69A1c9UF6r3Naq1M7_OMEJCLF1FzunfGHkW9XWZVe9pElEOaNfAGKVZg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Brahim, Taoufik</creator><creator>Jemni, Abdelmajid</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Effect of the Heat Pipe Adiabatic Region</title><author>Brahim, Taoufik ; Jemni, Abdelmajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-fe2f0c51f934116efa86b5810b78f0c82dc53b24b73de2a5781fa98dd3ccf79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Inertial</topic><topic>Mathematical models</topic><topic>Research Papers</topic><topic>Temperature gradient</topic><topic>Two-Phase Flow and Heat Transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahim, Taoufik</creatorcontrib><creatorcontrib>Jemni, Abdelmajid</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahim, Taoufik</au><au>Jemni, Abdelmajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Heat Pipe Adiabatic Region</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><addtitle>J Heat Transfer</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>136</volume><issue>4</issue><spage>0429011</spage><epage>4290110</epage><pages>0429011-4290110</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>24895467</pmid><doi>10.1115/1.4025132</doi><tpages>3861100</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 2014-04, Vol.136 (4), p.0429011-4290110 |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023847 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Adiabatic flow Applied sciences Boundaries Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Fluid flow Heat pipes Heat transfer Inertial Mathematical models Research Papers Temperature gradient Two-Phase Flow and Heat Transfer |
title | Effect of the Heat Pipe Adiabatic Region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Heat%20Pipe%20Adiabatic%20Region&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Brahim,%20Taoufik&rft.date=2014-04-01&rft.volume=136&rft.issue=4&rft.spage=0429011&rft.epage=4290110&rft.pages=0429011-4290110&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4025132&rft_dat=%3Cproquest_pubme%3E1826595505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770301152&rft_id=info:pmid/24895467&rfr_iscdi=true |