Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation

Optic nerve head (ONH) deformations may be involved in the onset or further development of glaucoma, including in patients with relatively normal intraocular pressures (IOPs). Characterizing posterior scleral deformations over physiological pressures may provide a better understanding of how changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2014-02, Vol.136 (2), p.021002-np
Hauptverfasser: Pyne, Jeffrey D, Genovese, Katia, Casaletto, Luciana, Vande Geest, Jonathan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue 2
container_start_page 021002
container_title Journal of biomechanical engineering
container_volume 136
creator Pyne, Jeffrey D
Genovese, Katia
Casaletto, Luciana
Vande Geest, Jonathan P
description Optic nerve head (ONH) deformations may be involved in the onset or further development of glaucoma, including in patients with relatively normal intraocular pressures (IOPs). Characterizing posterior scleral deformations over physiological pressures may provide a better understanding of how changes in IOP lead to changes in the mechanical environment of the ONH and possibly retinal ganglion cell death. Pressure inflation measurement test protocols are commonly used to measure deformation of the peripapillary sclera with full-field noncontact optical methods. The purpose of this work was to develop and validate a new sequential 3D digital image correlation (S-DIC) approach for quantification of posterior scleral pressure induced deformation that improves z (in-depth) resolution of the DIC measurement without losing in-plane sensitivity, while also being able to contour and map deformations of the complex-shaped ONH. Our approach combines two orthogonal axes of parallax with standard 3D DIC methods using a single high-resolution camera. The enhanced capabilities of S-DIC with respect to standard 3D DIC has been demonstrated by carrying out a complete benchmark for shape, deformation, and strain measurement on an object of known complex geometry. Our S-DIC method provided a reconstruction accuracy of 0.17% and an uncertainty in z-position measurement of 8 μm. The developed methodology has also been applied to a human posterior scleral shell, including the full peripapillary sclera and optic nerve. The relatively inexpensive S-DIC approach may provide new information on the biomechanical deformations of the optic nerve head and, thus, the death of retinal ganglion cells in primary open angle glaucoma.
doi_str_mv 10.1115/1.4026224
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520382952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-4810823c31e2e75f733f311bef3be2c32ee5d3c9f25887ff474355bf86f924463</originalsourceid><addsrcrecordid>eNqNkcFrFDEUh4Modq0ePAuSox6m5uUlO5mLIFvbLVQrVM8hO_uyTZmZTJOZgv-9sbsWvXkKJN_7yPv9GHsN4gQA9Ac4UUIupVRP2AK0NJVpNDxlCwHKVKJGOGIvcr4VAsAo8ZwdSYVYo1ILdnNNdzMNU3BddRp2YXIdv-jdjvgqpkSdm0IcuI-Jf3HjGIYdX8-9G_i3mCdKodxftx0lx92w5VfjFFr-ldI98TW5LT-lMtk_OF6yZ951mV4dzmP24-zz99W6urw6v1h9uqyckmaqlAFhJLYIJKnWvkb0CLAhjxuSLUoivcW28VIbU3uvaoVab7xZ-kYqtcRj9nHvHedNT9u27JZcZ8cUepd-2uiC_fdlCDd2F-9tiRCXWhbBu4MgxRJNnmwfcktd5waKc7agUTQalcT_QKVAI5sH6_s92qaYcyL_-CMQ9neJFuyhxMK-_XuFR_JPawV4swdc7snexjkNJVKrlGxA4S-M4Z_T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520382952</pqid></control><display><type>article</type><title>Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Pyne, Jeffrey D ; Genovese, Katia ; Casaletto, Luciana ; Vande Geest, Jonathan P</creator><creatorcontrib>Pyne, Jeffrey D ; Genovese, Katia ; Casaletto, Luciana ; Vande Geest, Jonathan P</creatorcontrib><description>Optic nerve head (ONH) deformations may be involved in the onset or further development of glaucoma, including in patients with relatively normal intraocular pressures (IOPs). Characterizing posterior scleral deformations over physiological pressures may provide a better understanding of how changes in IOP lead to changes in the mechanical environment of the ONH and possibly retinal ganglion cell death. Pressure inflation measurement test protocols are commonly used to measure deformation of the peripapillary sclera with full-field noncontact optical methods. The purpose of this work was to develop and validate a new sequential 3D digital image correlation (S-DIC) approach for quantification of posterior scleral pressure induced deformation that improves z (in-depth) resolution of the DIC measurement without losing in-plane sensitivity, while also being able to contour and map deformations of the complex-shaped ONH. Our approach combines two orthogonal axes of parallax with standard 3D DIC methods using a single high-resolution camera. The enhanced capabilities of S-DIC with respect to standard 3D DIC has been demonstrated by carrying out a complete benchmark for shape, deformation, and strain measurement on an object of known complex geometry. Our S-DIC method provided a reconstruction accuracy of 0.17% and an uncertainty in z-position measurement of 8 μm. The developed methodology has also been applied to a human posterior scleral shell, including the full peripapillary sclera and optic nerve. The relatively inexpensive S-DIC approach may provide new information on the biomechanical deformations of the optic nerve head and, thus, the death of retinal ganglion cells in primary open angle glaucoma.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4026224</identifier><identifier>PMID: 24337344</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Elastic Modulus - physiology ; Equipment Design ; Equipment Failure Analysis ; Humans ; Imaging, Three-Dimensional - instrumentation ; Imaging, Three-Dimensional - methods ; Intraocular Pressure - physiology ; Microscopy, Video - instrumentation ; Microscopy, Video - methods ; Optic Disk - cytology ; Optic Disk - physiology ; Reproducibility of Results ; Research Papers ; Sclera - cytology ; Sclera - physiology ; Sensitivity and Specificity</subject><ispartof>Journal of biomechanical engineering, 2014-02, Vol.136 (2), p.021002-np</ispartof><rights>Copyright © 2014 by ASME 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-4810823c31e2e75f733f311bef3be2c32ee5d3c9f25887ff474355bf86f924463</citedby><cites>FETCH-LOGICAL-a428t-4810823c31e2e75f733f311bef3be2c32ee5d3c9f25887ff474355bf86f924463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,38497</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24337344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyne, Jeffrey D</creatorcontrib><creatorcontrib>Genovese, Katia</creatorcontrib><creatorcontrib>Casaletto, Luciana</creatorcontrib><creatorcontrib>Vande Geest, Jonathan P</creatorcontrib><title>Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Optic nerve head (ONH) deformations may be involved in the onset or further development of glaucoma, including in patients with relatively normal intraocular pressures (IOPs). Characterizing posterior scleral deformations over physiological pressures may provide a better understanding of how changes in IOP lead to changes in the mechanical environment of the ONH and possibly retinal ganglion cell death. Pressure inflation measurement test protocols are commonly used to measure deformation of the peripapillary sclera with full-field noncontact optical methods. The purpose of this work was to develop and validate a new sequential 3D digital image correlation (S-DIC) approach for quantification of posterior scleral pressure induced deformation that improves z (in-depth) resolution of the DIC measurement without losing in-plane sensitivity, while also being able to contour and map deformations of the complex-shaped ONH. Our approach combines two orthogonal axes of parallax with standard 3D DIC methods using a single high-resolution camera. The enhanced capabilities of S-DIC with respect to standard 3D DIC has been demonstrated by carrying out a complete benchmark for shape, deformation, and strain measurement on an object of known complex geometry. Our S-DIC method provided a reconstruction accuracy of 0.17% and an uncertainty in z-position measurement of 8 μm. The developed methodology has also been applied to a human posterior scleral shell, including the full peripapillary sclera and optic nerve. The relatively inexpensive S-DIC approach may provide new information on the biomechanical deformations of the optic nerve head and, thus, the death of retinal ganglion cells in primary open angle glaucoma.</description><subject>Elastic Modulus - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Intraocular Pressure - physiology</subject><subject>Microscopy, Video - instrumentation</subject><subject>Microscopy, Video - methods</subject><subject>Optic Disk - cytology</subject><subject>Optic Disk - physiology</subject><subject>Reproducibility of Results</subject><subject>Research Papers</subject><subject>Sclera - cytology</subject><subject>Sclera - physiology</subject><subject>Sensitivity and Specificity</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFrFDEUh4Modq0ePAuSox6m5uUlO5mLIFvbLVQrVM8hO_uyTZmZTJOZgv-9sbsWvXkKJN_7yPv9GHsN4gQA9Ac4UUIupVRP2AK0NJVpNDxlCwHKVKJGOGIvcr4VAsAo8ZwdSYVYo1ILdnNNdzMNU3BddRp2YXIdv-jdjvgqpkSdm0IcuI-Jf3HjGIYdX8-9G_i3mCdKodxftx0lx92w5VfjFFr-ldI98TW5LT-lMtk_OF6yZ951mV4dzmP24-zz99W6urw6v1h9uqyckmaqlAFhJLYIJKnWvkb0CLAhjxuSLUoivcW28VIbU3uvaoVab7xZ-kYqtcRj9nHvHedNT9u27JZcZ8cUepd-2uiC_fdlCDd2F-9tiRCXWhbBu4MgxRJNnmwfcktd5waKc7agUTQalcT_QKVAI5sH6_s92qaYcyL_-CMQ9neJFuyhxMK-_XuFR_JPawV4swdc7snexjkNJVKrlGxA4S-M4Z_T</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Pyne, Jeffrey D</creator><creator>Genovese, Katia</creator><creator>Casaletto, Luciana</creator><creator>Vande Geest, Jonathan P</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation</title><author>Pyne, Jeffrey D ; Genovese, Katia ; Casaletto, Luciana ; Vande Geest, Jonathan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-4810823c31e2e75f733f311bef3be2c32ee5d3c9f25887ff474355bf86f924463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Elastic Modulus - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Intraocular Pressure - physiology</topic><topic>Microscopy, Video - instrumentation</topic><topic>Microscopy, Video - methods</topic><topic>Optic Disk - cytology</topic><topic>Optic Disk - physiology</topic><topic>Reproducibility of Results</topic><topic>Research Papers</topic><topic>Sclera - cytology</topic><topic>Sclera - physiology</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyne, Jeffrey D</creatorcontrib><creatorcontrib>Genovese, Katia</creatorcontrib><creatorcontrib>Casaletto, Luciana</creatorcontrib><creatorcontrib>Vande Geest, Jonathan P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pyne, Jeffrey D</au><au>Genovese, Katia</au><au>Casaletto, Luciana</au><au>Vande Geest, Jonathan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>136</volume><issue>2</issue><spage>021002</spage><epage>np</epage><pages>021002-np</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>Optic nerve head (ONH) deformations may be involved in the onset or further development of glaucoma, including in patients with relatively normal intraocular pressures (IOPs). Characterizing posterior scleral deformations over physiological pressures may provide a better understanding of how changes in IOP lead to changes in the mechanical environment of the ONH and possibly retinal ganglion cell death. Pressure inflation measurement test protocols are commonly used to measure deformation of the peripapillary sclera with full-field noncontact optical methods. The purpose of this work was to develop and validate a new sequential 3D digital image correlation (S-DIC) approach for quantification of posterior scleral pressure induced deformation that improves z (in-depth) resolution of the DIC measurement without losing in-plane sensitivity, while also being able to contour and map deformations of the complex-shaped ONH. Our approach combines two orthogonal axes of parallax with standard 3D DIC methods using a single high-resolution camera. The enhanced capabilities of S-DIC with respect to standard 3D DIC has been demonstrated by carrying out a complete benchmark for shape, deformation, and strain measurement on an object of known complex geometry. Our S-DIC method provided a reconstruction accuracy of 0.17% and an uncertainty in z-position measurement of 8 μm. The developed methodology has also been applied to a human posterior scleral shell, including the full peripapillary sclera and optic nerve. The relatively inexpensive S-DIC approach may provide new information on the biomechanical deformations of the optic nerve head and, thus, the death of retinal ganglion cells in primary open angle glaucoma.</abstract><cop>United States</cop><pub>ASME</pub><pmid>24337344</pmid><doi>10.1115/1.4026224</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 2014-02, Vol.136 (2), p.021002-np
issn 0148-0731
1528-8951
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023652
source MEDLINE; Alma/SFX Local Collection; ASME Transactions Journals (Current)
subjects Elastic Modulus - physiology
Equipment Design
Equipment Failure Analysis
Humans
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
Intraocular Pressure - physiology
Microscopy, Video - instrumentation
Microscopy, Video - methods
Optic Disk - cytology
Optic Disk - physiology
Reproducibility of Results
Research Papers
Sclera - cytology
Sclera - physiology
Sensitivity and Specificity
title Sequential-Digital Image Correlation for Mapping Human Posterior Sclera and Optic Nerve Head Deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential-Digital%20Image%20Correlation%20for%20Mapping%20Human%20Posterior%20Sclera%20and%20Optic%20Nerve%20Head%20Deformation&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Pyne,%20Jeffrey%20D&rft.date=2014-02-01&rft.volume=136&rft.issue=2&rft.spage=021002&rft.epage=np&rft.pages=021002-np&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4026224&rft_dat=%3Cproquest_pubme%3E1520382952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520382952&rft_id=info:pmid/24337344&rfr_iscdi=true