Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2014-04, Vol.7 (1), p.1-11
Hauptverfasser: Wainger, Brian J., Kiskinis, Evangelos, Mellin, Cassidy, Wiskow, Ole, Han, Steve S.W., Sandoe, Jackson, Perez, Numa P., Williams, Luis A., Lee, Seungkyu, Boulting, Gabriella, Berry, James D., Brown, Robert H., Cudkowicz, Merit E., Bean, Bruce P., Eggan, Kevin, Woolf, Clifford J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Cell reports (Cambridge)
container_volume 7
creator Wainger, Brian J.
Kiskinis, Evangelos
Mellin, Cassidy
Wiskow, Ole
Han, Steve S.W.
Sandoe, Jackson
Perez, Numa P.
Williams, Luis A.
Lee, Seungkyu
Boulting, Gabriella
Berry, James D.
Brown, Robert H.
Cudkowicz, Merit E.
Bean, Bruce P.
Eggan, Kevin
Woolf, Clifford J.
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 ( SOD1 ), C9orf72 and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected, but otherwise isogenic, SOD1 +/+ stem cell line do not display the hyperexcitability phenotype. SOD1 A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.
doi_str_mv 10.1016/j.celrep.2014.03.019
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023477</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_40234773</originalsourceid><addsrcrecordid>eNqljM1KAzEUhYMgtti-gYu8wIy5Seg4G0H8oQUrQt2HzPRWb5lJhpu0OG_vLNy49mwOfIfvCHEDqgQFq9tj2WLHOJRagS2VKRXUF2KuNUAB2lYzsUzpqKasFEBtr8RsosrcmXouNpuQmUKiVm6xb9gHlOtxQMbvlrJvqKM8yniQD687-e4zYcjFEzKdcS-3MUeWb3jiGNJCXB58l3D529fi_uX543FdDKemx307iew7NzD1nkcXPbm_S6Av9xnPziptbFWZfx_8APXfXEI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons</title><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wainger, Brian J. ; Kiskinis, Evangelos ; Mellin, Cassidy ; Wiskow, Ole ; Han, Steve S.W. ; Sandoe, Jackson ; Perez, Numa P. ; Williams, Luis A. ; Lee, Seungkyu ; Boulting, Gabriella ; Berry, James D. ; Brown, Robert H. ; Cudkowicz, Merit E. ; Bean, Bruce P. ; Eggan, Kevin ; Woolf, Clifford J.</creator><creatorcontrib>Wainger, Brian J. ; Kiskinis, Evangelos ; Mellin, Cassidy ; Wiskow, Ole ; Han, Steve S.W. ; Sandoe, Jackson ; Perez, Numa P. ; Williams, Luis A. ; Lee, Seungkyu ; Boulting, Gabriella ; Berry, James D. ; Brown, Robert H. ; Cudkowicz, Merit E. ; Bean, Bruce P. ; Eggan, Kevin ; Woolf, Clifford J.</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 ( SOD1 ), C9orf72 and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected, but otherwise isogenic, SOD1 +/+ stem cell line do not display the hyperexcitability phenotype. SOD1 A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.</description><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2014.03.019</identifier><identifier>PMID: 24703839</identifier><language>eng</language><ispartof>Cell reports (Cambridge), 2014-04, Vol.7 (1), p.1-11</ispartof><rights>2014 Published by Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Wainger, Brian J.</creatorcontrib><creatorcontrib>Kiskinis, Evangelos</creatorcontrib><creatorcontrib>Mellin, Cassidy</creatorcontrib><creatorcontrib>Wiskow, Ole</creatorcontrib><creatorcontrib>Han, Steve S.W.</creatorcontrib><creatorcontrib>Sandoe, Jackson</creatorcontrib><creatorcontrib>Perez, Numa P.</creatorcontrib><creatorcontrib>Williams, Luis A.</creatorcontrib><creatorcontrib>Lee, Seungkyu</creatorcontrib><creatorcontrib>Boulting, Gabriella</creatorcontrib><creatorcontrib>Berry, James D.</creatorcontrib><creatorcontrib>Brown, Robert H.</creatorcontrib><creatorcontrib>Cudkowicz, Merit E.</creatorcontrib><creatorcontrib>Bean, Bruce P.</creatorcontrib><creatorcontrib>Eggan, Kevin</creatorcontrib><creatorcontrib>Woolf, Clifford J.</creatorcontrib><title>Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons</title><title>Cell reports (Cambridge)</title><description>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 ( SOD1 ), C9orf72 and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected, but otherwise isogenic, SOD1 +/+ stem cell line do not display the hyperexcitability phenotype. SOD1 A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.</description><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqljM1KAzEUhYMgtti-gYu8wIy5Seg4G0H8oQUrQt2HzPRWb5lJhpu0OG_vLNy49mwOfIfvCHEDqgQFq9tj2WLHOJRagS2VKRXUF2KuNUAB2lYzsUzpqKasFEBtr8RsosrcmXouNpuQmUKiVm6xb9gHlOtxQMbvlrJvqKM8yniQD687-e4zYcjFEzKdcS-3MUeWb3jiGNJCXB58l3D529fi_uX543FdDKemx307iew7NzD1nkcXPbm_S6Av9xnPziptbFWZfx_8APXfXEI</recordid><startdate>20140403</startdate><enddate>20140403</enddate><creator>Wainger, Brian J.</creator><creator>Kiskinis, Evangelos</creator><creator>Mellin, Cassidy</creator><creator>Wiskow, Ole</creator><creator>Han, Steve S.W.</creator><creator>Sandoe, Jackson</creator><creator>Perez, Numa P.</creator><creator>Williams, Luis A.</creator><creator>Lee, Seungkyu</creator><creator>Boulting, Gabriella</creator><creator>Berry, James D.</creator><creator>Brown, Robert H.</creator><creator>Cudkowicz, Merit E.</creator><creator>Bean, Bruce P.</creator><creator>Eggan, Kevin</creator><creator>Woolf, Clifford J.</creator><scope>5PM</scope></search><sort><creationdate>20140403</creationdate><title>Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons</title><author>Wainger, Brian J. ; Kiskinis, Evangelos ; Mellin, Cassidy ; Wiskow, Ole ; Han, Steve S.W. ; Sandoe, Jackson ; Perez, Numa P. ; Williams, Luis A. ; Lee, Seungkyu ; Boulting, Gabriella ; Berry, James D. ; Brown, Robert H. ; Cudkowicz, Merit E. ; Bean, Bruce P. ; Eggan, Kevin ; Woolf, Clifford J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_40234773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wainger, Brian J.</creatorcontrib><creatorcontrib>Kiskinis, Evangelos</creatorcontrib><creatorcontrib>Mellin, Cassidy</creatorcontrib><creatorcontrib>Wiskow, Ole</creatorcontrib><creatorcontrib>Han, Steve S.W.</creatorcontrib><creatorcontrib>Sandoe, Jackson</creatorcontrib><creatorcontrib>Perez, Numa P.</creatorcontrib><creatorcontrib>Williams, Luis A.</creatorcontrib><creatorcontrib>Lee, Seungkyu</creatorcontrib><creatorcontrib>Boulting, Gabriella</creatorcontrib><creatorcontrib>Berry, James D.</creatorcontrib><creatorcontrib>Brown, Robert H.</creatorcontrib><creatorcontrib>Cudkowicz, Merit E.</creatorcontrib><creatorcontrib>Bean, Bruce P.</creatorcontrib><creatorcontrib>Eggan, Kevin</creatorcontrib><creatorcontrib>Woolf, Clifford J.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wainger, Brian J.</au><au>Kiskinis, Evangelos</au><au>Mellin, Cassidy</au><au>Wiskow, Ole</au><au>Han, Steve S.W.</au><au>Sandoe, Jackson</au><au>Perez, Numa P.</au><au>Williams, Luis A.</au><au>Lee, Seungkyu</au><au>Boulting, Gabriella</au><au>Berry, James D.</au><au>Brown, Robert H.</au><au>Cudkowicz, Merit E.</au><au>Bean, Bruce P.</au><au>Eggan, Kevin</au><au>Woolf, Clifford J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons</atitle><jtitle>Cell reports (Cambridge)</jtitle><date>2014-04-03</date><risdate>2014</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><eissn>2211-1247</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 ( SOD1 ), C9orf72 and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected, but otherwise isogenic, SOD1 +/+ stem cell line do not display the hyperexcitability phenotype. SOD1 A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.</abstract><pmid>24703839</pmid><doi>10.1016/j.celrep.2014.03.019</doi></addata></record>
fulltext fulltext
identifier EISSN: 2211-1247
ispartof Cell reports (Cambridge), 2014-04, Vol.7 (1), p.1-11
issn 2211-1247
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4023477
source DOAJ Directory of Open Access Journals; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Membrane%20Hyperexcitability%20of%20ALS%20Patient-Derived%20Motor%20Neurons&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Wainger,%20Brian%20J.&rft.date=2014-04-03&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2014.03.019&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4023477%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24703839&rfr_iscdi=true