A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates

Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2010-11, Vol.29 (25), p.2592-2604
Hauptverfasser: Qi, Lihong, Wang, Ying-Fang, He, Yulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2604
container_issue 25
container_start_page 2592
container_title Statistics in medicine
container_volume 29
creator Qi, Lihong
Wang, Ying-Fang
He, Yulei
description Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.4016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4022355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174481361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EotuCxCdAFqdeUvwntpMLUrWipaLAgZYeLSeZZF2SONjObvfb49UuKzhwsj3-zZs3egi9oeSCEsLeBztc5ITKZ2hBSakywkTxHC0IUyqTiooTdBrCIyGUCqZeohNGCiJzwhdofYlrN0zG2-BG7Fo8zH20Uw_YDtMcTbSpbMYGt3Pfb7GZuwHGCA3egO1WuwuEaAcTnQ-4dR4v3RP20HkIYde6sXGFB5seY5cmrdMgEyG8Qi9a0wd4fTjP0P3Vx7vlp-z22_XN8vI2q3OVy6xuirRJXjMGZSMN5ayqWF6UTFWKM1oCFEqYugJVMipJW1ZFJUTqUqxuJVB-hj7sdae5GqCpk3dvej35ZNlvtTNW__sz2pXu3FrnhDEuRBJ4dxDw7tecdtWPbvZj8qyVJEVJRUESdL6Hau9C8NAeB1CidwHpFJDeBZTQt38bOoJ_EklAtgc2toftf4X095svB8EDb0OEpyNv_E8tFVdCP3y91kuuHq4-l1z_4L8BHgCsWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760891580</pqid></control><display><type>article</type><title>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Qi, Lihong ; Wang, Ying-Fang ; He, Yulei</creator><creatorcontrib>Qi, Lihong ; Wang, Ying-Fang ; He, Yulei</creatorcontrib><description>Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4016</identifier><identifier>PMID: 20806403</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>accelerated failure time model ; Analysis of Variance ; augmented inverse probability weighted estimators ; Autistic Disorder - complications ; Autistic Disorder - etiology ; Autistic Disorder - genetics ; Bayesian analysis ; Bias ; Comparative studies ; Computer Simulation ; Data Interpretation, Statistical ; doubly robust property ; Environmental Pollutants - adverse effects ; Halogenated Diphenyl Ethers - adverse effects ; Humans ; Language Disorders - etiology ; Male ; Medical statistics ; missing data ; Models, Statistical ; proportional hazards model ; Proportional Hazards Models ; Regression Analysis ; Risk Assessment ; Simulation ; survival analysis</subject><ispartof>Statistics in medicine, 2010-11, Vol.29 (25), p.2592-2604</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Nov 10, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</citedby><cites>FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20806403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Lihong</creatorcontrib><creatorcontrib>Wang, Ying-Fang</creatorcontrib><creatorcontrib>He, Yulei</creatorcontrib><title>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>accelerated failure time model</subject><subject>Analysis of Variance</subject><subject>augmented inverse probability weighted estimators</subject><subject>Autistic Disorder - complications</subject><subject>Autistic Disorder - etiology</subject><subject>Autistic Disorder - genetics</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Comparative studies</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>doubly robust property</subject><subject>Environmental Pollutants - adverse effects</subject><subject>Halogenated Diphenyl Ethers - adverse effects</subject><subject>Humans</subject><subject>Language Disorders - etiology</subject><subject>Male</subject><subject>Medical statistics</subject><subject>missing data</subject><subject>Models, Statistical</subject><subject>proportional hazards model</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Risk Assessment</subject><subject>Simulation</subject><subject>survival analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EotuCxCdAFqdeUvwntpMLUrWipaLAgZYeLSeZZF2SONjObvfb49UuKzhwsj3-zZs3egi9oeSCEsLeBztc5ITKZ2hBSakywkTxHC0IUyqTiooTdBrCIyGUCqZeohNGCiJzwhdofYlrN0zG2-BG7Fo8zH20Uw_YDtMcTbSpbMYGt3Pfb7GZuwHGCA3egO1WuwuEaAcTnQ-4dR4v3RP20HkIYde6sXGFB5seY5cmrdMgEyG8Qi9a0wd4fTjP0P3Vx7vlp-z22_XN8vI2q3OVy6xuirRJXjMGZSMN5ayqWF6UTFWKM1oCFEqYugJVMipJW1ZFJUTqUqxuJVB-hj7sdae5GqCpk3dvej35ZNlvtTNW__sz2pXu3FrnhDEuRBJ4dxDw7tecdtWPbvZj8qyVJEVJRUESdL6Hau9C8NAeB1CidwHpFJDeBZTQt38bOoJ_EklAtgc2toftf4X095svB8EDb0OEpyNv_E8tFVdCP3y91kuuHq4-l1z_4L8BHgCsWQ</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Qi, Lihong</creator><creator>Wang, Ying-Fang</creator><creator>He, Yulei</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>5PM</scope></search><sort><creationdate>20101110</creationdate><title>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</title><author>Qi, Lihong ; Wang, Ying-Fang ; He, Yulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>accelerated failure time model</topic><topic>Analysis of Variance</topic><topic>augmented inverse probability weighted estimators</topic><topic>Autistic Disorder - complications</topic><topic>Autistic Disorder - etiology</topic><topic>Autistic Disorder - genetics</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Comparative studies</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>doubly robust property</topic><topic>Environmental Pollutants - adverse effects</topic><topic>Halogenated Diphenyl Ethers - adverse effects</topic><topic>Humans</topic><topic>Language Disorders - etiology</topic><topic>Male</topic><topic>Medical statistics</topic><topic>missing data</topic><topic>Models, Statistical</topic><topic>proportional hazards model</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Risk Assessment</topic><topic>Simulation</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Lihong</creatorcontrib><creatorcontrib>Wang, Ying-Fang</creatorcontrib><creatorcontrib>He, Yulei</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Lihong</au><au>Wang, Ying-Fang</au><au>He, Yulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>29</volume><issue>25</issue><spage>2592</spage><epage>2604</epage><pages>2592-2604</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>20806403</pmid><doi>10.1002/sim.4016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2010-11, Vol.29 (25), p.2592-2604
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4022355
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects accelerated failure time model
Analysis of Variance
augmented inverse probability weighted estimators
Autistic Disorder - complications
Autistic Disorder - etiology
Autistic Disorder - genetics
Bayesian analysis
Bias
Comparative studies
Computer Simulation
Data Interpretation, Statistical
doubly robust property
Environmental Pollutants - adverse effects
Halogenated Diphenyl Ethers - adverse effects
Humans
Language Disorders - etiology
Male
Medical statistics
missing data
Models, Statistical
proportional hazards model
Proportional Hazards Models
Regression Analysis
Risk Assessment
Simulation
survival analysis
title A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20multiple%20imputation%20and%20fully%20augmented%20weighted%20estimators%20for%20Cox%20regression%20with%20missing%20covariates&rft.jtitle=Statistics%20in%20medicine&rft.au=Qi,%20Lihong&rft.date=2010-11-10&rft.volume=29&rft.issue=25&rft.spage=2592&rft.epage=2604&rft.pages=2592-2604&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.4016&rft_dat=%3Cproquest_pubme%3E2174481361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760891580&rft_id=info:pmid/20806403&rfr_iscdi=true