A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates
Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2010-11, Vol.29 (25), p.2592-2604 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2604 |
---|---|
container_issue | 25 |
container_start_page | 2592 |
container_title | Statistics in medicine |
container_volume | 29 |
creator | Qi, Lihong Wang, Ying-Fang He, Yulei |
description | Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.4016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4022355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174481361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EotuCxCdAFqdeUvwntpMLUrWipaLAgZYeLSeZZF2SONjObvfb49UuKzhwsj3-zZs3egi9oeSCEsLeBztc5ITKZ2hBSakywkTxHC0IUyqTiooTdBrCIyGUCqZeohNGCiJzwhdofYlrN0zG2-BG7Fo8zH20Uw_YDtMcTbSpbMYGt3Pfb7GZuwHGCA3egO1WuwuEaAcTnQ-4dR4v3RP20HkIYde6sXGFB5seY5cmrdMgEyG8Qi9a0wd4fTjP0P3Vx7vlp-z22_XN8vI2q3OVy6xuirRJXjMGZSMN5ayqWF6UTFWKM1oCFEqYugJVMipJW1ZFJUTqUqxuJVB-hj7sdae5GqCpk3dvej35ZNlvtTNW__sz2pXu3FrnhDEuRBJ4dxDw7tecdtWPbvZj8qyVJEVJRUESdL6Hau9C8NAeB1CidwHpFJDeBZTQt38bOoJ_EklAtgc2toftf4X095svB8EDb0OEpyNv_E8tFVdCP3y91kuuHq4-l1z_4L8BHgCsWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760891580</pqid></control><display><type>article</type><title>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Qi, Lihong ; Wang, Ying-Fang ; He, Yulei</creator><creatorcontrib>Qi, Lihong ; Wang, Ying-Fang ; He, Yulei</creatorcontrib><description>Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.4016</identifier><identifier>PMID: 20806403</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>accelerated failure time model ; Analysis of Variance ; augmented inverse probability weighted estimators ; Autistic Disorder - complications ; Autistic Disorder - etiology ; Autistic Disorder - genetics ; Bayesian analysis ; Bias ; Comparative studies ; Computer Simulation ; Data Interpretation, Statistical ; doubly robust property ; Environmental Pollutants - adverse effects ; Halogenated Diphenyl Ethers - adverse effects ; Humans ; Language Disorders - etiology ; Male ; Medical statistics ; missing data ; Models, Statistical ; proportional hazards model ; Proportional Hazards Models ; Regression Analysis ; Risk Assessment ; Simulation ; survival analysis</subject><ispartof>Statistics in medicine, 2010-11, Vol.29 (25), p.2592-2604</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Nov 10, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</citedby><cites>FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.4016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.4016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20806403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Lihong</creatorcontrib><creatorcontrib>Wang, Ying-Fang</creatorcontrib><creatorcontrib>He, Yulei</creatorcontrib><title>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>accelerated failure time model</subject><subject>Analysis of Variance</subject><subject>augmented inverse probability weighted estimators</subject><subject>Autistic Disorder - complications</subject><subject>Autistic Disorder - etiology</subject><subject>Autistic Disorder - genetics</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Comparative studies</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>doubly robust property</subject><subject>Environmental Pollutants - adverse effects</subject><subject>Halogenated Diphenyl Ethers - adverse effects</subject><subject>Humans</subject><subject>Language Disorders - etiology</subject><subject>Male</subject><subject>Medical statistics</subject><subject>missing data</subject><subject>Models, Statistical</subject><subject>proportional hazards model</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Risk Assessment</subject><subject>Simulation</subject><subject>survival analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EotuCxCdAFqdeUvwntpMLUrWipaLAgZYeLSeZZF2SONjObvfb49UuKzhwsj3-zZs3egi9oeSCEsLeBztc5ITKZ2hBSakywkTxHC0IUyqTiooTdBrCIyGUCqZeohNGCiJzwhdofYlrN0zG2-BG7Fo8zH20Uw_YDtMcTbSpbMYGt3Pfb7GZuwHGCA3egO1WuwuEaAcTnQ-4dR4v3RP20HkIYde6sXGFB5seY5cmrdMgEyG8Qi9a0wd4fTjP0P3Vx7vlp-z22_XN8vI2q3OVy6xuirRJXjMGZSMN5ayqWF6UTFWKM1oCFEqYugJVMipJW1ZFJUTqUqxuJVB-hj7sdae5GqCpk3dvej35ZNlvtTNW__sz2pXu3FrnhDEuRBJ4dxDw7tecdtWPbvZj8qyVJEVJRUESdL6Hau9C8NAeB1CidwHpFJDeBZTQt38bOoJ_EklAtgc2toftf4X095svB8EDb0OEpyNv_E8tFVdCP3y91kuuHq4-l1z_4L8BHgCsWQ</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Qi, Lihong</creator><creator>Wang, Ying-Fang</creator><creator>He, Yulei</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>5PM</scope></search><sort><creationdate>20101110</creationdate><title>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</title><author>Qi, Lihong ; Wang, Ying-Fang ; He, Yulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4746-cd82584c22e9d6a132bb248927b73219ee875acbe792160f9b8b55cd872cf6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>accelerated failure time model</topic><topic>Analysis of Variance</topic><topic>augmented inverse probability weighted estimators</topic><topic>Autistic Disorder - complications</topic><topic>Autistic Disorder - etiology</topic><topic>Autistic Disorder - genetics</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Comparative studies</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>doubly robust property</topic><topic>Environmental Pollutants - adverse effects</topic><topic>Halogenated Diphenyl Ethers - adverse effects</topic><topic>Humans</topic><topic>Language Disorders - etiology</topic><topic>Male</topic><topic>Medical statistics</topic><topic>missing data</topic><topic>Models, Statistical</topic><topic>proportional hazards model</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Risk Assessment</topic><topic>Simulation</topic><topic>survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Lihong</creatorcontrib><creatorcontrib>Wang, Ying-Fang</creatorcontrib><creatorcontrib>He, Yulei</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Lihong</au><au>Wang, Ying-Fang</au><au>He, Yulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>29</volume><issue>25</issue><spage>2592</spage><epage>2604</epage><pages>2592-2604</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>20806403</pmid><doi>10.1002/sim.4016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2010-11, Vol.29 (25), p.2592-2604 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4022355 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | accelerated failure time model Analysis of Variance augmented inverse probability weighted estimators Autistic Disorder - complications Autistic Disorder - etiology Autistic Disorder - genetics Bayesian analysis Bias Comparative studies Computer Simulation Data Interpretation, Statistical doubly robust property Environmental Pollutants - adverse effects Halogenated Diphenyl Ethers - adverse effects Humans Language Disorders - etiology Male Medical statistics missing data Models, Statistical proportional hazards model Proportional Hazards Models Regression Analysis Risk Assessment Simulation survival analysis |
title | A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20multiple%20imputation%20and%20fully%20augmented%20weighted%20estimators%20for%20Cox%20regression%20with%20missing%20covariates&rft.jtitle=Statistics%20in%20medicine&rft.au=Qi,%20Lihong&rft.date=2010-11-10&rft.volume=29&rft.issue=25&rft.spage=2592&rft.epage=2604&rft.pages=2592-2604&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.4016&rft_dat=%3Cproquest_pubme%3E2174481361%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760891580&rft_id=info:pmid/20806403&rfr_iscdi=true |