β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator

In our work toward developing ester-containing self-assembling peptides as soft biomaterials, we have found that a fluorenylmethoxycarbonyl (Fmoc)-conjugated alanine-lactic acid (Ala-Lac) sequence self-assembles into nanostructures that gel in water. This process occurs despite Fmoc-Ala-Lac’s inabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2014-05, Vol.30 (18), p.5287-5296
Hauptverfasser: Eckes, Kevin M, Mu, Xiaojia, Ruehle, Marissa A, Ren, Pengyu, Suggs, Laura J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5296
container_issue 18
container_start_page 5287
container_title Langmuir
container_volume 30
creator Eckes, Kevin M
Mu, Xiaojia
Ruehle, Marissa A
Ren, Pengyu
Suggs, Laura J
description In our work toward developing ester-containing self-assembling peptides as soft biomaterials, we have found that a fluorenylmethoxycarbonyl (Fmoc)-conjugated alanine-lactic acid (Ala-Lac) sequence self-assembles into nanostructures that gel in water. This process occurs despite Fmoc-Ala-Lac’s inability to interact with other Fmoc-Ala-Lac molecules via β-sheet-like amide–amide hydrogen bonding, a condition previously thought to be crucial to the self-assembly of Fmoc-conjugated peptides. Experimental comparisons of Fmoc-Ala-Lac to its self-assembling peptide sequence analogue Fmoc-Ala-Ala using a variety of microscopic, spectroscopic, and bulk characterization techniques demonstrate distinct features of the two systems and show that while angstrom-scale self-assembled structures are similar, their nanometer-scale size and morphological properties diverge and give rise to different bulk mechanical properties. Molecular dynamics simulations were performed to gain more insight into the differences between the two systems. An analysis of the hydrogen-bonding and solvent-surface interface properties of the simulated fibrils revealed that Fmoc-Ala-Lac fibrils are stronger and less hydrophilic than Fmoc-Ala-Ala fibrils. We propose that this difference in fibril amphiphilicity gives rise to differences in the higher-order assembly of fibrils into nanostructures seen in TEM. Importantly, we confirm experimentally that β-sheet-type hydrogen bonding is not crucial to the self-assembly of short, conjugated peptides, and we demonstrate computationally that the amide bond in such systems may act mainly to mediate the solvation of the self-assembled single fibrils and therefore regulate a more extensive higher-order aggregation of fibrils. This work provides a basic understanding for future research in designing highly degradable self-assembling materials with peptide-like bioactivity for biomedical applications.
doi_str_mv 10.1021/la500679b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4020586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000598305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-fec31e31cf4f2728b3f6f0b0d468dbc7ae44dba06a4b987b84f56ccc0b6445643</originalsourceid><addsrcrecordid>eNptkc1u1DAURiMEotPCghdA3iDRRcCJHSdhUWk0TFukCiQG1pZ_rmdcJXFqO4h5I9Y8CM-E0ykjkFhZ8nd07Hu_LHtR4DcFLou3nagwZnUrH2WLoipxXjVl_Thb4JqSvKaMnGSnIdxijFtC26fZSUnrhtGWLLIfv36izQ4gBvTRRfQZ7ibrQb9DK9dLO4BG6-8jeNvDEEWHxKDnZJyiiNYN6WYTJ20hIGfQBjqTL0OAXnb7e_QKuntuTuMO0DpE8PnKJZcd7LBFy6Rw2wlmQAzosncqf29HGKPVgK732rvt7HD-WfbEiC7A84fzLPt6uf6yus5vPl19WC1vckFJE3MDihRACmWoKeuykcQwgyXWlDVaqloApVoKzASVbVPLhpqKKaWwZJRWjJKz7OLgHSfZg1Zpbi86PqYVCL_nTlj-bzLYHd-6b5ziElcNS4LXDwLv7iYIkfc2KOg6MYCbAi9TDVXbEFwl9PyAKu9C8GCOzxSYz83yY7OJffn3v47knyoT8OoACBX4rZt8Wm34j-g3P4CvdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000598305</pqid></control><display><type>article</type><title>β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator</title><source>ACS Publications</source><source>MEDLINE</source><creator>Eckes, Kevin M ; Mu, Xiaojia ; Ruehle, Marissa A ; Ren, Pengyu ; Suggs, Laura J</creator><creatorcontrib>Eckes, Kevin M ; Mu, Xiaojia ; Ruehle, Marissa A ; Ren, Pengyu ; Suggs, Laura J</creatorcontrib><description>In our work toward developing ester-containing self-assembling peptides as soft biomaterials, we have found that a fluorenylmethoxycarbonyl (Fmoc)-conjugated alanine-lactic acid (Ala-Lac) sequence self-assembles into nanostructures that gel in water. This process occurs despite Fmoc-Ala-Lac’s inability to interact with other Fmoc-Ala-Lac molecules via β-sheet-like amide–amide hydrogen bonding, a condition previously thought to be crucial to the self-assembly of Fmoc-conjugated peptides. Experimental comparisons of Fmoc-Ala-Lac to its self-assembling peptide sequence analogue Fmoc-Ala-Ala using a variety of microscopic, spectroscopic, and bulk characterization techniques demonstrate distinct features of the two systems and show that while angstrom-scale self-assembled structures are similar, their nanometer-scale size and morphological properties diverge and give rise to different bulk mechanical properties. Molecular dynamics simulations were performed to gain more insight into the differences between the two systems. An analysis of the hydrogen-bonding and solvent-surface interface properties of the simulated fibrils revealed that Fmoc-Ala-Lac fibrils are stronger and less hydrophilic than Fmoc-Ala-Ala fibrils. We propose that this difference in fibril amphiphilicity gives rise to differences in the higher-order assembly of fibrils into nanostructures seen in TEM. Importantly, we confirm experimentally that β-sheet-type hydrogen bonding is not crucial to the self-assembly of short, conjugated peptides, and we demonstrate computationally that the amide bond in such systems may act mainly to mediate the solvation of the self-assembled single fibrils and therefore regulate a more extensive higher-order aggregation of fibrils. This work provides a basic understanding for future research in designing highly degradable self-assembling materials with peptide-like bioactivity for biomedical applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la500679b</identifier><identifier>PMID: 24786493</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bioactive properties ; biocompatible materials ; gelation ; gels ; hydrogen bonding ; hydrophilicity ; Hydrophobic and Hydrophilic Interactions ; mechanical properties ; molecular dynamics ; Molecular Dynamics Simulation ; nanomaterials ; Peptide Fragments - chemistry ; peptides ; Peptides - chemistry ; Protein Conformation ; spectroscopy ; transmission electron microscopy</subject><ispartof>Langmuir, 2014-05, Vol.30 (18), p.5287-5296</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-fec31e31cf4f2728b3f6f0b0d468dbc7ae44dba06a4b987b84f56ccc0b6445643</citedby><cites>FETCH-LOGICAL-a438t-fec31e31cf4f2728b3f6f0b0d468dbc7ae44dba06a4b987b84f56ccc0b6445643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la500679b$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la500679b$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24786493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckes, Kevin M</creatorcontrib><creatorcontrib>Mu, Xiaojia</creatorcontrib><creatorcontrib>Ruehle, Marissa A</creatorcontrib><creatorcontrib>Ren, Pengyu</creatorcontrib><creatorcontrib>Suggs, Laura J</creatorcontrib><title>β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In our work toward developing ester-containing self-assembling peptides as soft biomaterials, we have found that a fluorenylmethoxycarbonyl (Fmoc)-conjugated alanine-lactic acid (Ala-Lac) sequence self-assembles into nanostructures that gel in water. This process occurs despite Fmoc-Ala-Lac’s inability to interact with other Fmoc-Ala-Lac molecules via β-sheet-like amide–amide hydrogen bonding, a condition previously thought to be crucial to the self-assembly of Fmoc-conjugated peptides. Experimental comparisons of Fmoc-Ala-Lac to its self-assembling peptide sequence analogue Fmoc-Ala-Ala using a variety of microscopic, spectroscopic, and bulk characterization techniques demonstrate distinct features of the two systems and show that while angstrom-scale self-assembled structures are similar, their nanometer-scale size and morphological properties diverge and give rise to different bulk mechanical properties. Molecular dynamics simulations were performed to gain more insight into the differences between the two systems. An analysis of the hydrogen-bonding and solvent-surface interface properties of the simulated fibrils revealed that Fmoc-Ala-Lac fibrils are stronger and less hydrophilic than Fmoc-Ala-Ala fibrils. We propose that this difference in fibril amphiphilicity gives rise to differences in the higher-order assembly of fibrils into nanostructures seen in TEM. Importantly, we confirm experimentally that β-sheet-type hydrogen bonding is not crucial to the self-assembly of short, conjugated peptides, and we demonstrate computationally that the amide bond in such systems may act mainly to mediate the solvation of the self-assembled single fibrils and therefore regulate a more extensive higher-order aggregation of fibrils. This work provides a basic understanding for future research in designing highly degradable self-assembling materials with peptide-like bioactivity for biomedical applications.</description><subject>bioactive properties</subject><subject>biocompatible materials</subject><subject>gelation</subject><subject>gels</subject><subject>hydrogen bonding</subject><subject>hydrophilicity</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>mechanical properties</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>nanomaterials</subject><subject>Peptide Fragments - chemistry</subject><subject>peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>spectroscopy</subject><subject>transmission electron microscopy</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkc1u1DAURiMEotPCghdA3iDRRcCJHSdhUWk0TFukCiQG1pZ_rmdcJXFqO4h5I9Y8CM-E0ykjkFhZ8nd07Hu_LHtR4DcFLou3nagwZnUrH2WLoipxXjVl_Thb4JqSvKaMnGSnIdxijFtC26fZSUnrhtGWLLIfv36izQ4gBvTRRfQZ7ibrQb9DK9dLO4BG6-8jeNvDEEWHxKDnZJyiiNYN6WYTJ20hIGfQBjqTL0OAXnb7e_QKuntuTuMO0DpE8PnKJZcd7LBFy6Rw2wlmQAzosncqf29HGKPVgK732rvt7HD-WfbEiC7A84fzLPt6uf6yus5vPl19WC1vckFJE3MDihRACmWoKeuykcQwgyXWlDVaqloApVoKzASVbVPLhpqKKaWwZJRWjJKz7OLgHSfZg1Zpbi86PqYVCL_nTlj-bzLYHd-6b5ziElcNS4LXDwLv7iYIkfc2KOg6MYCbAi9TDVXbEFwl9PyAKu9C8GCOzxSYz83yY7OJffn3v47knyoT8OoACBX4rZt8Wm34j-g3P4CvdQ</recordid><startdate>20140513</startdate><enddate>20140513</enddate><creator>Eckes, Kevin M</creator><creator>Mu, Xiaojia</creator><creator>Ruehle, Marissa A</creator><creator>Ren, Pengyu</creator><creator>Suggs, Laura J</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140513</creationdate><title>β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator</title><author>Eckes, Kevin M ; Mu, Xiaojia ; Ruehle, Marissa A ; Ren, Pengyu ; Suggs, Laura J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-fec31e31cf4f2728b3f6f0b0d468dbc7ae44dba06a4b987b84f56ccc0b6445643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>bioactive properties</topic><topic>biocompatible materials</topic><topic>gelation</topic><topic>gels</topic><topic>hydrogen bonding</topic><topic>hydrophilicity</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>mechanical properties</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>nanomaterials</topic><topic>Peptide Fragments - chemistry</topic><topic>peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>spectroscopy</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckes, Kevin M</creatorcontrib><creatorcontrib>Mu, Xiaojia</creatorcontrib><creatorcontrib>Ruehle, Marissa A</creatorcontrib><creatorcontrib>Ren, Pengyu</creatorcontrib><creatorcontrib>Suggs, Laura J</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckes, Kevin M</au><au>Mu, Xiaojia</au><au>Ruehle, Marissa A</au><au>Ren, Pengyu</au><au>Suggs, Laura J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2014-05-13</date><risdate>2014</risdate><volume>30</volume><issue>18</issue><spage>5287</spage><epage>5296</epage><pages>5287-5296</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>In our work toward developing ester-containing self-assembling peptides as soft biomaterials, we have found that a fluorenylmethoxycarbonyl (Fmoc)-conjugated alanine-lactic acid (Ala-Lac) sequence self-assembles into nanostructures that gel in water. This process occurs despite Fmoc-Ala-Lac’s inability to interact with other Fmoc-Ala-Lac molecules via β-sheet-like amide–amide hydrogen bonding, a condition previously thought to be crucial to the self-assembly of Fmoc-conjugated peptides. Experimental comparisons of Fmoc-Ala-Lac to its self-assembling peptide sequence analogue Fmoc-Ala-Ala using a variety of microscopic, spectroscopic, and bulk characterization techniques demonstrate distinct features of the two systems and show that while angstrom-scale self-assembled structures are similar, their nanometer-scale size and morphological properties diverge and give rise to different bulk mechanical properties. Molecular dynamics simulations were performed to gain more insight into the differences between the two systems. An analysis of the hydrogen-bonding and solvent-surface interface properties of the simulated fibrils revealed that Fmoc-Ala-Lac fibrils are stronger and less hydrophilic than Fmoc-Ala-Ala fibrils. We propose that this difference in fibril amphiphilicity gives rise to differences in the higher-order assembly of fibrils into nanostructures seen in TEM. Importantly, we confirm experimentally that β-sheet-type hydrogen bonding is not crucial to the self-assembly of short, conjugated peptides, and we demonstrate computationally that the amide bond in such systems may act mainly to mediate the solvation of the self-assembled single fibrils and therefore regulate a more extensive higher-order aggregation of fibrils. This work provides a basic understanding for future research in designing highly degradable self-assembling materials with peptide-like bioactivity for biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24786493</pmid><doi>10.1021/la500679b</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2014-05, Vol.30 (18), p.5287-5296
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4020586
source ACS Publications; MEDLINE
subjects bioactive properties
biocompatible materials
gelation
gels
hydrogen bonding
hydrophilicity
Hydrophobic and Hydrophilic Interactions
mechanical properties
molecular dynamics
Molecular Dynamics Simulation
nanomaterials
Peptide Fragments - chemistry
peptides
Peptides - chemistry
Protein Conformation
spectroscopy
transmission electron microscopy
title β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2%20Sheets%20Not%20Required:%20Combined%20Experimental%20and%20Computational%20Studies%20of%20Self-Assembly%20and%20Gelation%20of%20the%20Ester-Containing%20Analogue%20of%20an%20Fmoc-Dipeptide%20Hydrogelator&rft.jtitle=Langmuir&rft.au=Eckes,%20Kevin%20M&rft.date=2014-05-13&rft.volume=30&rft.issue=18&rft.spage=5287&rft.epage=5296&rft.pages=5287-5296&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la500679b&rft_dat=%3Cproquest_pubme%3E2000598305%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000598305&rft_id=info:pmid/24786493&rfr_iscdi=true