Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease

The authors show that a nonpsychoactive cannabinoid, DH-CBD, can rescue exaggerated acoustic startle phenotypes caused by startle disease–causing point mutations in the glycine receptor (GlyR) α1 subunit. Homomeric and presynaptic GlyRs showed significant impairment as a result of these mutations, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2014-02, Vol.17 (2), p.232-239
Hauptverfasser: Xiong, Wei, Chen, Shao-Rui, He, Liming, Cheng, Kejun, Zhao, Yi-Lin, Chen, Hong, Li, De-Pei, Homanics, Gregg E, Peever, John, Rice, Kenner C, Wu, Ling-gang, Pan, Hui-Lin, Zhang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 2
container_start_page 232
container_title Nature neuroscience
container_volume 17
creator Xiong, Wei
Chen, Shao-Rui
He, Liming
Cheng, Kejun
Zhao, Yi-Lin
Chen, Hong
Li, De-Pei
Homanics, Gregg E
Peever, John
Rice, Kenner C
Wu, Ling-gang
Pan, Hui-Lin
Zhang, Li
description The authors show that a nonpsychoactive cannabinoid, DH-CBD, can rescue exaggerated acoustic startle phenotypes caused by startle disease–causing point mutations in the glycine receptor (GlyR) α1 subunit. Homomeric and presynaptic GlyRs showed significant impairment as a result of these mutations, which was selectively rescued by DH-CBD. Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation–induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.
doi_str_mv 10.1038/nn.3615
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361242305</galeid><sourcerecordid>A361242305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-7c4f794169abc0dfd5eefda386b0284fe1d569048070db11e341568946ad64813</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdR7IfiP5ABL2ovZs33TG6EUtQWCoofF16FbHJmNnU2GZNM6f77Zmltu0USSMh5zpucN6eq3mC0wIh2H7xfUIH5s2ofcyYa3BLxvOyRbBtBuNirDlK6RAi1vJMvqz3CqESEiP3q97cIaeP1lJ2ph3FjnIc6goEph5hqXWY9hQw-Oz3WeQVRTzBv4azjALnuQ6xXmwki_JlGuHa6ti6BTvCqetHrMcHru_Ww-vX508_Ts-bi65fz05OLxgiKctMa1reSYSH10iDbWw7QW007sUSkYz1gy4VErEMtskuMgTLMRSeZ0FawDtPD6uOt7jQv12BNeWrUo5qiW-u4UUE7tRvxbqWGcKUYwlIKWgTe3wnE8HeGlNXaJQPjqD2EOSnMCWNYEtkV9N0T9DLM0ZfyFBZcoI5gQh6oQY-gnO9DuddsRdVJ-SXCCEW8UIv_UGVYWDsTPPSunO8kHO8kFCbDdR70nJI6__F9lz26ZU0MKUXo7_3ASG07Rnmvth1TyLeP7bvn_rXIgz2phPwA8VHNT7RuAMCxx7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656082122</pqid></control><display><type>article</type><title>Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Xiong, Wei ; Chen, Shao-Rui ; He, Liming ; Cheng, Kejun ; Zhao, Yi-Lin ; Chen, Hong ; Li, De-Pei ; Homanics, Gregg E ; Peever, John ; Rice, Kenner C ; Wu, Ling-gang ; Pan, Hui-Lin ; Zhang, Li</creator><creatorcontrib>Xiong, Wei ; Chen, Shao-Rui ; He, Liming ; Cheng, Kejun ; Zhao, Yi-Lin ; Chen, Hong ; Li, De-Pei ; Homanics, Gregg E ; Peever, John ; Rice, Kenner C ; Wu, Ling-gang ; Pan, Hui-Lin ; Zhang, Li</creatorcontrib><description>The authors show that a nonpsychoactive cannabinoid, DH-CBD, can rescue exaggerated acoustic startle phenotypes caused by startle disease–causing point mutations in the glycine receptor (GlyR) α1 subunit. Homomeric and presynaptic GlyRs showed significant impairment as a result of these mutations, which was selectively rescued by DH-CBD. Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation–induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3615</identifier><identifier>PMID: 24390226</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 13/109 ; 42 ; 42/70 ; 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology ; 631/378/1689 ; 631/378/1697/1691 ; 631/378/2586 ; 64 ; 64/110 ; 9/74 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain research ; Brain Stem - cytology ; Cannabinoids ; Disease Models, Animal ; Excitatory Amino Acid Antagonists - pharmacology ; Female ; Genetic aspects ; Glycine receptors ; HEK293 Cells ; Humans ; In Vitro Techniques ; Male ; Membrane Potentials - drug effects ; Membrane Potentials - genetics ; Membrane Potentials - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Neurologic Mutants ; Mutation - genetics ; Nervous system diseases ; Neurobiology ; Neurons - drug effects ; Neurons - physiology ; Neurosciences ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Properties ; Receptors, Glycine - genetics ; Receptors, Glycine - metabolism ; Sodium Channel Blockers - pharmacology ; Spinal Cord - cytology ; Stiff-Person Syndrome - genetics ; Stiff-Person Syndrome - pathology ; Tetrodotoxin - pharmacology ; Valine - analogs &amp; derivatives ; Valine - pharmacology</subject><ispartof>Nature neuroscience, 2014-02, Vol.17 (2), p.232-239</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-7c4f794169abc0dfd5eefda386b0284fe1d569048070db11e341568946ad64813</citedby><cites>FETCH-LOGICAL-c630t-7c4f794169abc0dfd5eefda386b0284fe1d569048070db11e341568946ad64813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3615$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3615$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24390226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chen, Shao-Rui</creatorcontrib><creatorcontrib>He, Liming</creatorcontrib><creatorcontrib>Cheng, Kejun</creatorcontrib><creatorcontrib>Zhao, Yi-Lin</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Li, De-Pei</creatorcontrib><creatorcontrib>Homanics, Gregg E</creatorcontrib><creatorcontrib>Peever, John</creatorcontrib><creatorcontrib>Rice, Kenner C</creatorcontrib><creatorcontrib>Wu, Ling-gang</creatorcontrib><creatorcontrib>Pan, Hui-Lin</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The authors show that a nonpsychoactive cannabinoid, DH-CBD, can rescue exaggerated acoustic startle phenotypes caused by startle disease–causing point mutations in the glycine receptor (GlyR) α1 subunit. Homomeric and presynaptic GlyRs showed significant impairment as a result of these mutations, which was selectively rescued by DH-CBD. Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation–induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.</description><subject>13</subject><subject>13/109</subject><subject>42</subject><subject>42/70</subject><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</subject><subject>631/378/1689</subject><subject>631/378/1697/1691</subject><subject>631/378/2586</subject><subject>64</subject><subject>64/110</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Brain Stem - cytology</subject><subject>Cannabinoids</subject><subject>Disease Models, Animal</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Glycine receptors</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - genetics</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Neurologic Mutants</subject><subject>Mutation - genetics</subject><subject>Nervous system diseases</subject><subject>Neurobiology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Properties</subject><subject>Receptors, Glycine - genetics</subject><subject>Receptors, Glycine - metabolism</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Spinal Cord - cytology</subject><subject>Stiff-Person Syndrome - genetics</subject><subject>Stiff-Person Syndrome - pathology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Valine - analogs &amp; derivatives</subject><subject>Valine - pharmacology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1rFDEUhgdR7IfiP5ABL2ovZs33TG6EUtQWCoofF16FbHJmNnU2GZNM6f77Zmltu0USSMh5zpucN6eq3mC0wIh2H7xfUIH5s2ofcyYa3BLxvOyRbBtBuNirDlK6RAi1vJMvqz3CqESEiP3q97cIaeP1lJ2ph3FjnIc6goEph5hqXWY9hQw-Oz3WeQVRTzBv4azjALnuQ6xXmwki_JlGuHa6ti6BTvCqetHrMcHru_Ww-vX508_Ts-bi65fz05OLxgiKctMa1reSYSH10iDbWw7QW007sUSkYz1gy4VErEMtskuMgTLMRSeZ0FawDtPD6uOt7jQv12BNeWrUo5qiW-u4UUE7tRvxbqWGcKUYwlIKWgTe3wnE8HeGlNXaJQPjqD2EOSnMCWNYEtkV9N0T9DLM0ZfyFBZcoI5gQh6oQY-gnO9DuddsRdVJ-SXCCEW8UIv_UGVYWDsTPPSunO8kHO8kFCbDdR70nJI6__F9lz26ZU0MKUXo7_3ASG07Rnmvth1TyLeP7bvn_rXIgz2phPwA8VHNT7RuAMCxx7A</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Xiong, Wei</creator><creator>Chen, Shao-Rui</creator><creator>He, Liming</creator><creator>Cheng, Kejun</creator><creator>Zhao, Yi-Lin</creator><creator>Chen, Hong</creator><creator>Li, De-Pei</creator><creator>Homanics, Gregg E</creator><creator>Peever, John</creator><creator>Rice, Kenner C</creator><creator>Wu, Ling-gang</creator><creator>Pan, Hui-Lin</creator><creator>Zhang, Li</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease</title><author>Xiong, Wei ; Chen, Shao-Rui ; He, Liming ; Cheng, Kejun ; Zhao, Yi-Lin ; Chen, Hong ; Li, De-Pei ; Homanics, Gregg E ; Peever, John ; Rice, Kenner C ; Wu, Ling-gang ; Pan, Hui-Lin ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-7c4f794169abc0dfd5eefda386b0284fe1d569048070db11e341568946ad64813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>13/109</topic><topic>42</topic><topic>42/70</topic><topic>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</topic><topic>631/378/1689</topic><topic>631/378/1697/1691</topic><topic>631/378/2586</topic><topic>64</topic><topic>64/110</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Brain Stem - cytology</topic><topic>Cannabinoids</topic><topic>Disease Models, Animal</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Glycine receptors</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - genetics</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Neurologic Mutants</topic><topic>Mutation - genetics</topic><topic>Nervous system diseases</topic><topic>Neurobiology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Properties</topic><topic>Receptors, Glycine - genetics</topic><topic>Receptors, Glycine - metabolism</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Spinal Cord - cytology</topic><topic>Stiff-Person Syndrome - genetics</topic><topic>Stiff-Person Syndrome - pathology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Valine - analogs &amp; derivatives</topic><topic>Valine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chen, Shao-Rui</creatorcontrib><creatorcontrib>He, Liming</creatorcontrib><creatorcontrib>Cheng, Kejun</creatorcontrib><creatorcontrib>Zhao, Yi-Lin</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Li, De-Pei</creatorcontrib><creatorcontrib>Homanics, Gregg E</creatorcontrib><creatorcontrib>Peever, John</creatorcontrib><creatorcontrib>Rice, Kenner C</creatorcontrib><creatorcontrib>Wu, Ling-gang</creatorcontrib><creatorcontrib>Pan, Hui-Lin</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Wei</au><au>Chen, Shao-Rui</au><au>He, Liming</au><au>Cheng, Kejun</au><au>Zhao, Yi-Lin</au><au>Chen, Hong</au><au>Li, De-Pei</au><au>Homanics, Gregg E</au><au>Peever, John</au><au>Rice, Kenner C</au><au>Wu, Ling-gang</au><au>Pan, Hui-Lin</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>17</volume><issue>2</issue><spage>232</spage><epage>239</epage><pages>232-239</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The authors show that a nonpsychoactive cannabinoid, DH-CBD, can rescue exaggerated acoustic startle phenotypes caused by startle disease–causing point mutations in the glycine receptor (GlyR) α1 subunit. Homomeric and presynaptic GlyRs showed significant impairment as a result of these mutations, which was selectively rescued by DH-CBD. Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation–induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>24390226</pmid><doi>10.1038/nn.3615</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2014-02, Vol.17 (2), p.232-239
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019963
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13
13/109
42
42/70
6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology
631/378/1689
631/378/1697/1691
631/378/2586
64
64/110
9/74
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedicine
Brain research
Brain Stem - cytology
Cannabinoids
Disease Models, Animal
Excitatory Amino Acid Antagonists - pharmacology
Female
Genetic aspects
Glycine receptors
HEK293 Cells
Humans
In Vitro Techniques
Male
Membrane Potentials - drug effects
Membrane Potentials - genetics
Membrane Potentials - physiology
Mice
Mice, Inbred C57BL
Mice, Neurologic Mutants
Mutation - genetics
Nervous system diseases
Neurobiology
Neurons - drug effects
Neurons - physiology
Neurosciences
Presynaptic Terminals - drug effects
Presynaptic Terminals - metabolism
Properties
Receptors, Glycine - genetics
Receptors, Glycine - metabolism
Sodium Channel Blockers - pharmacology
Spinal Cord - cytology
Stiff-Person Syndrome - genetics
Stiff-Person Syndrome - pathology
Tetrodotoxin - pharmacology
Valine - analogs & derivatives
Valine - pharmacology
title Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20glycine%20receptors%20as%20a%20potential%20therapeutic%20target%20for%20hyperekplexia%20disease&rft.jtitle=Nature%20neuroscience&rft.au=Xiong,%20Wei&rft.date=2014-02-01&rft.volume=17&rft.issue=2&rft.spage=232&rft.epage=239&rft.pages=232-239&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3615&rft_dat=%3Cgale_pubme%3EA361242305%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656082122&rft_id=info:pmid/24390226&rft_galeid=A361242305&rfr_iscdi=true