A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity

ABSTRACT Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene‐by‐gene (G × G), or gene‐by‐environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic epidemiology 2014-01, Vol.38 (1), p.51-59
Hauptverfasser: Cao, Ying, Wei, Peng, Bailey, Matthew, Kauwe, John S. K., Maxwell, Taylor J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 51
container_title Genetic epidemiology
container_volume 38
creator Cao, Ying
Wei, Peng
Bailey, Matthew
Kauwe, John S. K.
Maxwell, Taylor J.
description ABSTRACT Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene‐by‐gene (G × G), or gene‐by‐environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean‐only functional variant, we demonstrate how LD can produce variance‐heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D′, and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance‐only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.
doi_str_mv 10.1002/gepi.21778
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529944646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5198-e73f22ff746b17d781658d5859536720c28ba837fa0450ad1883e274aa0d84f13</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EoqFw4Q9AlrggpC0ef6y9F6SqH0mlQitUCuJiObuzwWXjDfYukP8eh7QRcIDTHOY3T-_NI-QpsANgjL9a4MofcNDa3CMTYJUpONf8PpkwLaFgolJ75FFKN4wByEo9JHtcSsON0BNyekivMSY3-A7pxTL4-ZjoFaaBtn2kxzhgPfiwoG_QBepCQ69d9C7USGd5F_sFBvTD-jF50Lou4ZPbuU_en55cHc2K84vp2dHheVEryL5Qi5bzttWynINutIFSmUYZVSlRas5qbuYu-2odk4q5BowRyLV0jjVGtiD2yeut7mqcL7GpMQzRdXYV_dLFte2dt39ugv9sF_03KxlUksks8OJWIPZfx5zTLn2qsetcwH5MFhSvKilLWf4flZUwbPPRjD7_C73pxxjyJzaCXKucXmfq5ZaqY59SxHbnG5jdNGk3TdpfTWb42e9Jd-hddRmALfA9V7f-h5Sdnlye3YkW2xufBvyxu3Hxiy210Mp-eDu1x58u2ezjO7BC_ATN3bYR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522755197</pqid></control><display><type>article</type><title>A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Ying ; Wei, Peng ; Bailey, Matthew ; Kauwe, John S. K. ; Maxwell, Taylor J.</creator><creatorcontrib>Cao, Ying ; Wei, Peng ; Bailey, Matthew ; Kauwe, John S. K. ; Maxwell, Taylor J.</creatorcontrib><description>ABSTRACT Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene‐by‐gene (G × G), or gene‐by‐environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean‐only functional variant, we demonstrate how LD can produce variance‐heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D′, and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance‐only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.21778</identifier><identifier>PMID: 24482837</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Alzheimer Disease - genetics ; G × E ; G × G ; Gene Frequency - genetics ; Genes ; Genotype ; GWAS ; Humans ; Likelihood Functions ; linkage disequilibrium ; Linkage Disequilibrium - genetics ; Matrix Metalloproteinase 3 - cerebrospinal fluid ; Matrix Metalloproteinase 3 - genetics ; Models, Genetic ; Phenotype ; Quantitative Trait Loci - genetics ; Research Design ; rQTL ; vQTL</subject><ispartof>Genetic epidemiology, 2014-01, Vol.38 (1), p.51-59</ispartof><rights>2013 WILEY PERIODICALS, INC.</rights><rights>2014 WILEY PERIODICALS, INC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5198-e73f22ff746b17d781658d5859536720c28ba837fa0450ad1883e274aa0d84f13</citedby><cites>FETCH-LOGICAL-c5198-e73f22ff746b17d781658d5859536720c28ba837fa0450ad1883e274aa0d84f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.21778$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.21778$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24482837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Bailey, Matthew</creatorcontrib><creatorcontrib>Kauwe, John S. K.</creatorcontrib><creatorcontrib>Maxwell, Taylor J.</creatorcontrib><title>A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>ABSTRACT Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene‐by‐gene (G × G), or gene‐by‐environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean‐only functional variant, we demonstrate how LD can produce variance‐heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D′, and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance‐only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.</description><subject>Alzheimer Disease - genetics</subject><subject>G × E</subject><subject>G × G</subject><subject>Gene Frequency - genetics</subject><subject>Genes</subject><subject>Genotype</subject><subject>GWAS</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>linkage disequilibrium</subject><subject>Linkage Disequilibrium - genetics</subject><subject>Matrix Metalloproteinase 3 - cerebrospinal fluid</subject><subject>Matrix Metalloproteinase 3 - genetics</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Research Design</subject><subject>rQTL</subject><subject>vQTL</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EoqFw4Q9AlrggpC0ef6y9F6SqH0mlQitUCuJiObuzwWXjDfYukP8eh7QRcIDTHOY3T-_NI-QpsANgjL9a4MofcNDa3CMTYJUpONf8PpkwLaFgolJ75FFKN4wByEo9JHtcSsON0BNyekivMSY3-A7pxTL4-ZjoFaaBtn2kxzhgPfiwoG_QBepCQ69d9C7USGd5F_sFBvTD-jF50Lou4ZPbuU_en55cHc2K84vp2dHheVEryL5Qi5bzttWynINutIFSmUYZVSlRas5qbuYu-2odk4q5BowRyLV0jjVGtiD2yeut7mqcL7GpMQzRdXYV_dLFte2dt39ugv9sF_03KxlUksks8OJWIPZfx5zTLn2qsetcwH5MFhSvKilLWf4flZUwbPPRjD7_C73pxxjyJzaCXKucXmfq5ZaqY59SxHbnG5jdNGk3TdpfTWb42e9Jd-hddRmALfA9V7f-h5Sdnlye3YkW2xufBvyxu3Hxiy210Mp-eDu1x58u2ezjO7BC_ATN3bYR</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Cao, Ying</creator><creator>Wei, Peng</creator><creator>Bailey, Matthew</creator><creator>Kauwe, John S. K.</creator><creator>Maxwell, Taylor J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201401</creationdate><title>A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity</title><author>Cao, Ying ; Wei, Peng ; Bailey, Matthew ; Kauwe, John S. K. ; Maxwell, Taylor J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5198-e73f22ff746b17d781658d5859536720c28ba837fa0450ad1883e274aa0d84f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer Disease - genetics</topic><topic>G × E</topic><topic>G × G</topic><topic>Gene Frequency - genetics</topic><topic>Genes</topic><topic>Genotype</topic><topic>GWAS</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>linkage disequilibrium</topic><topic>Linkage Disequilibrium - genetics</topic><topic>Matrix Metalloproteinase 3 - cerebrospinal fluid</topic><topic>Matrix Metalloproteinase 3 - genetics</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Research Design</topic><topic>rQTL</topic><topic>vQTL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Bailey, Matthew</creatorcontrib><creatorcontrib>Kauwe, John S. K.</creatorcontrib><creatorcontrib>Maxwell, Taylor J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ying</au><au>Wei, Peng</au><au>Bailey, Matthew</au><au>Kauwe, John S. K.</au><au>Maxwell, Taylor J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>38</volume><issue>1</issue><spage>51</spage><epage>59</epage><pages>51-59</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><abstract>ABSTRACT Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene‐by‐gene (G × G), or gene‐by‐environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean‐only functional variant, we demonstrate how LD can produce variance‐heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D′, and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance‐only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24482837</pmid><doi>10.1002/gepi.21778</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2014-01, Vol.38 (1), p.51-59
issn 0741-0395
1098-2272
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019404
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alzheimer Disease - genetics
G × E
G × G
Gene Frequency - genetics
Genes
Genotype
GWAS
Humans
Likelihood Functions
linkage disequilibrium
Linkage Disequilibrium - genetics
Matrix Metalloproteinase 3 - cerebrospinal fluid
Matrix Metalloproteinase 3 - genetics
Models, Genetic
Phenotype
Quantitative Trait Loci - genetics
Research Design
rQTL
vQTL
title A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Versatile%20Omnibus%20Test%20for%20Detecting%20Mean%20and%20Variance%20Heterogeneity&rft.jtitle=Genetic%20epidemiology&rft.au=Cao,%20Ying&rft.date=2014-01&rft.volume=38&rft.issue=1&rft.spage=51&rft.epage=59&rft.pages=51-59&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.21778&rft_dat=%3Cproquest_pubme%3E1529944646%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522755197&rft_id=info:pmid/24482837&rfr_iscdi=true