Transgenic zebrafish model of the C43G human insulin gene mutation

Aims/Introduction The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of diabetes investigation 2013-03, Vol.4 (2), p.157-167
Hauptverfasser: Eames, Stefani C, Kinkel, Mary D, Rajan, Sindhu, Prince, Victoria E, Philipson, Louis H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 2
container_start_page 157
container_title Journal of diabetes investigation
container_volume 4
creator Eames, Stefani C
Kinkel, Mary D
Rajan, Sindhu
Prince, Victoria E
Philipson, Louis H
description Aims/Introduction The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased secretion of wild‐type insulin. The current study extends this work to an in vivo zebrafish model. We hypothesized that C43G‐green fluorescent protein (GFP) would be retained in the ER, disrupt β‐cell function and lead to impaired glucose homeostasis. Materials and Methods Islets from adult transgenic zebrafish expressing GFP‐tagged human proinsulin mutant C43G (C43G‐GFP) or wild‐type human proinsulin (Cpep‐GFP) were analyzed histologically across a range of ages. Blood glucose concentration was determined under fasting conditions and in response to glucose injection. Insulin secretion was assessed by measuring circulating GFP and endogenous C‐peptide levels after glucose injection. Results The majority of β‐cells expressing C43G proinsulin showed excessive accumulation of C43G‐GFP in the ER. Western blotting showed that C43G‐GFP was present only as proinsulin, indicating defective processing. GFP was poorly secreted in C43G mutants compared with controls. Despite these defects, blood glucose homeostasis was normal. Mutant fish maintained β‐cell mass well into maturity and secreted endogenous C‐peptide. Conclusions In this model, the C43G proinsulin mutation does not impair glucose homeostasis or cause significant loss of β‐cell mass. This model might be useful for identifying potential therapeutic targets for proper trafficking of intracellular insulin or for maintenance of β‐cell mass in early‐stage diabetic patients.
doi_str_mv 10.1111/jdi.12015
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920808541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5805-40b0d725a9a2ba9975fac084e0b84f9c733cc31128ab9906d9be60e7a7177d693</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhgdRbKld-Ack4EYX0-b7YyPYqd62FBWpdBkymUxvrjNJTWbU-uub29teVBDP5hzIc17ek7eqniN4gEodrjp_gDBE7FG1iyGFNUKYPt7OiO9U-zmvYCkiJefiabWDqaSEU7FbHV0kE_KVC96CX65Npvd5CcbYuQHEHkxLBxpKFmA5jyYAH_I8-AAK78A4T2byMTyrnvRmyG7_vu9VX96_u2hO6vOPi9Pm7XltmYSsprCFncDMKINbo5RgvbFQUgdbSXtlBSHWkmJemlYpyDvVOg6dMAIJ0XFF9qo3G93ruR1dZ12Ykhn0dfKjSTc6Gq__fAl-qa_id00hUljAIvDqXiDFb7PLkx59tm4YTHBxzhoxzAVWnMj_o5RLUq5Sa1sv_0JXcU6h_IRGBAmOEWNr6vWGsinmnFy_9Y2gXueoS476LsfCvvj90C35kFoBDjfADz-4m38r6bPj0wfJerPh8-R-bjdM-qq5IILpyw8LfXn86eTsM2l0Q24Bhk20FA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317621559</pqid></control><display><type>article</type><title>Transgenic zebrafish model of the C43G human insulin gene mutation</title><source>Wiley Online Library Open Access</source><creator>Eames, Stefani C ; Kinkel, Mary D ; Rajan, Sindhu ; Prince, Victoria E ; Philipson, Louis H</creator><creatorcontrib>Eames, Stefani C ; Kinkel, Mary D ; Rajan, Sindhu ; Prince, Victoria E ; Philipson, Louis H</creatorcontrib><description>Aims/Introduction The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased secretion of wild‐type insulin. The current study extends this work to an in vivo zebrafish model. We hypothesized that C43G‐green fluorescent protein (GFP) would be retained in the ER, disrupt β‐cell function and lead to impaired glucose homeostasis. Materials and Methods Islets from adult transgenic zebrafish expressing GFP‐tagged human proinsulin mutant C43G (C43G‐GFP) or wild‐type human proinsulin (Cpep‐GFP) were analyzed histologically across a range of ages. Blood glucose concentration was determined under fasting conditions and in response to glucose injection. Insulin secretion was assessed by measuring circulating GFP and endogenous C‐peptide levels after glucose injection. Results The majority of β‐cells expressing C43G proinsulin showed excessive accumulation of C43G‐GFP in the ER. Western blotting showed that C43G‐GFP was present only as proinsulin, indicating defective processing. GFP was poorly secreted in C43G mutants compared with controls. Despite these defects, blood glucose homeostasis was normal. Mutant fish maintained β‐cell mass well into maturity and secreted endogenous C‐peptide. Conclusions In this model, the C43G proinsulin mutation does not impair glucose homeostasis or cause significant loss of β‐cell mass. This model might be useful for identifying potential therapeutic targets for proper trafficking of intracellular insulin or for maintenance of β‐cell mass in early‐stage diabetic patients.</description><identifier>ISSN: 2040-1116</identifier><identifier>EISSN: 2040-1124</identifier><identifier>DOI: 10.1111/jdi.12015</identifier><identifier>PMID: 24843647</identifier><language>eng</language><publisher>Japan: Blackwell Publishing Ltd</publisher><subject>Danio rerio ; Freshwater ; Glucose ; Insulin ; Islets of langerhans/pathology ; Marine ; Misfolded proinsulin ; Mutation ; Neonatal diabetes ; Original ; Proteins</subject><ispartof>Journal of diabetes investigation, 2013-03, Vol.4 (2), p.157-167</ispartof><rights>2012 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd</rights><rights>2013 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd</rights><rights>2013 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd © 2012 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5805-40b0d725a9a2ba9975fac084e0b84f9c733cc31128ab9906d9be60e7a7177d693</citedby><cites>FETCH-LOGICAL-c5805-40b0d725a9a2ba9975fac084e0b84f9c733cc31128ab9906d9be60e7a7177d693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019270/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019270/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdi.12015$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24843647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eames, Stefani C</creatorcontrib><creatorcontrib>Kinkel, Mary D</creatorcontrib><creatorcontrib>Rajan, Sindhu</creatorcontrib><creatorcontrib>Prince, Victoria E</creatorcontrib><creatorcontrib>Philipson, Louis H</creatorcontrib><title>Transgenic zebrafish model of the C43G human insulin gene mutation</title><title>Journal of diabetes investigation</title><addtitle>J Diabetes Invest</addtitle><description>Aims/Introduction The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased secretion of wild‐type insulin. The current study extends this work to an in vivo zebrafish model. We hypothesized that C43G‐green fluorescent protein (GFP) would be retained in the ER, disrupt β‐cell function and lead to impaired glucose homeostasis. Materials and Methods Islets from adult transgenic zebrafish expressing GFP‐tagged human proinsulin mutant C43G (C43G‐GFP) or wild‐type human proinsulin (Cpep‐GFP) were analyzed histologically across a range of ages. Blood glucose concentration was determined under fasting conditions and in response to glucose injection. Insulin secretion was assessed by measuring circulating GFP and endogenous C‐peptide levels after glucose injection. Results The majority of β‐cells expressing C43G proinsulin showed excessive accumulation of C43G‐GFP in the ER. Western blotting showed that C43G‐GFP was present only as proinsulin, indicating defective processing. GFP was poorly secreted in C43G mutants compared with controls. Despite these defects, blood glucose homeostasis was normal. Mutant fish maintained β‐cell mass well into maturity and secreted endogenous C‐peptide. Conclusions In this model, the C43G proinsulin mutation does not impair glucose homeostasis or cause significant loss of β‐cell mass. This model might be useful for identifying potential therapeutic targets for proper trafficking of intracellular insulin or for maintenance of β‐cell mass in early‐stage diabetic patients.</description><subject>Danio rerio</subject><subject>Freshwater</subject><subject>Glucose</subject><subject>Insulin</subject><subject>Islets of langerhans/pathology</subject><subject>Marine</subject><subject>Misfolded proinsulin</subject><subject>Mutation</subject><subject>Neonatal diabetes</subject><subject>Original</subject><subject>Proteins</subject><issn>2040-1116</issn><issn>2040-1124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEUhgdRbKld-Ack4EYX0-b7YyPYqd62FBWpdBkymUxvrjNJTWbU-uub29teVBDP5hzIc17ek7eqniN4gEodrjp_gDBE7FG1iyGFNUKYPt7OiO9U-zmvYCkiJefiabWDqaSEU7FbHV0kE_KVC96CX65Npvd5CcbYuQHEHkxLBxpKFmA5jyYAH_I8-AAK78A4T2byMTyrnvRmyG7_vu9VX96_u2hO6vOPi9Pm7XltmYSsprCFncDMKINbo5RgvbFQUgdbSXtlBSHWkmJemlYpyDvVOg6dMAIJ0XFF9qo3G93ruR1dZ12Ykhn0dfKjSTc6Gq__fAl-qa_id00hUljAIvDqXiDFb7PLkx59tm4YTHBxzhoxzAVWnMj_o5RLUq5Sa1sv_0JXcU6h_IRGBAmOEWNr6vWGsinmnFy_9Y2gXueoS476LsfCvvj90C35kFoBDjfADz-4m38r6bPj0wfJerPh8-R-bjdM-qq5IILpyw8LfXn86eTsM2l0Q24Bhk20FA</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Eames, Stefani C</creator><creator>Kinkel, Mary D</creator><creator>Rajan, Sindhu</creator><creator>Prince, Victoria E</creator><creator>Philipson, Louis H</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>H94</scope><scope>K9.</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201303</creationdate><title>Transgenic zebrafish model of the C43G human insulin gene mutation</title><author>Eames, Stefani C ; Kinkel, Mary D ; Rajan, Sindhu ; Prince, Victoria E ; Philipson, Louis H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5805-40b0d725a9a2ba9975fac084e0b84f9c733cc31128ab9906d9be60e7a7177d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Danio rerio</topic><topic>Freshwater</topic><topic>Glucose</topic><topic>Insulin</topic><topic>Islets of langerhans/pathology</topic><topic>Marine</topic><topic>Misfolded proinsulin</topic><topic>Mutation</topic><topic>Neonatal diabetes</topic><topic>Original</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eames, Stefani C</creatorcontrib><creatorcontrib>Kinkel, Mary D</creatorcontrib><creatorcontrib>Rajan, Sindhu</creatorcontrib><creatorcontrib>Prince, Victoria E</creatorcontrib><creatorcontrib>Philipson, Louis H</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of diabetes investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eames, Stefani C</au><au>Kinkel, Mary D</au><au>Rajan, Sindhu</au><au>Prince, Victoria E</au><au>Philipson, Louis H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transgenic zebrafish model of the C43G human insulin gene mutation</atitle><jtitle>Journal of diabetes investigation</jtitle><addtitle>J Diabetes Invest</addtitle><date>2013-03</date><risdate>2013</risdate><volume>4</volume><issue>2</issue><spage>157</spage><epage>167</epage><pages>157-167</pages><issn>2040-1116</issn><eissn>2040-1124</eissn><abstract>Aims/Introduction The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased secretion of wild‐type insulin. The current study extends this work to an in vivo zebrafish model. We hypothesized that C43G‐green fluorescent protein (GFP) would be retained in the ER, disrupt β‐cell function and lead to impaired glucose homeostasis. Materials and Methods Islets from adult transgenic zebrafish expressing GFP‐tagged human proinsulin mutant C43G (C43G‐GFP) or wild‐type human proinsulin (Cpep‐GFP) were analyzed histologically across a range of ages. Blood glucose concentration was determined under fasting conditions and in response to glucose injection. Insulin secretion was assessed by measuring circulating GFP and endogenous C‐peptide levels after glucose injection. Results The majority of β‐cells expressing C43G proinsulin showed excessive accumulation of C43G‐GFP in the ER. Western blotting showed that C43G‐GFP was present only as proinsulin, indicating defective processing. GFP was poorly secreted in C43G mutants compared with controls. Despite these defects, blood glucose homeostasis was normal. Mutant fish maintained β‐cell mass well into maturity and secreted endogenous C‐peptide. Conclusions In this model, the C43G proinsulin mutation does not impair glucose homeostasis or cause significant loss of β‐cell mass. This model might be useful for identifying potential therapeutic targets for proper trafficking of intracellular insulin or for maintenance of β‐cell mass in early‐stage diabetic patients.</abstract><cop>Japan</cop><pub>Blackwell Publishing Ltd</pub><pmid>24843647</pmid><doi>10.1111/jdi.12015</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2040-1116
ispartof Journal of diabetes investigation, 2013-03, Vol.4 (2), p.157-167
issn 2040-1116
2040-1124
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4019270
source Wiley Online Library Open Access
subjects Danio rerio
Freshwater
Glucose
Insulin
Islets of langerhans/pathology
Marine
Misfolded proinsulin
Mutation
Neonatal diabetes
Original
Proteins
title Transgenic zebrafish model of the C43G human insulin gene mutation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transgenic%20zebrafish%20model%20of%20the%20C43G%20human%20insulin%20gene%20mutation&rft.jtitle=Journal%20of%20diabetes%20investigation&rft.au=Eames,%20Stefani%20C&rft.date=2013-03&rft.volume=4&rft.issue=2&rft.spage=157&rft.epage=167&rft.pages=157-167&rft.issn=2040-1116&rft.eissn=2040-1124&rft_id=info:doi/10.1111/jdi.12015&rft_dat=%3Cproquest_24P%3E2920808541%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317621559&rft_id=info:pmid/24843647&rfr_iscdi=true