Reference-free cell mixture adjustments in analysis of DNA methylation data
Motivation: Recently there has been increasing interest in the effects of cell mixture on the measurement of DNA methylation, specifically the extent to which small perturbations in cell mixture proportions can register as changes in DNA methylation. A recently published set of statistical methods e...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2014-05, Vol.30 (10), p.1431-1439 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1439 |
---|---|
container_issue | 10 |
container_start_page | 1431 |
container_title | Bioinformatics |
container_volume | 30 |
creator | Houseman, Eugene Andres Molitor, John Marsit, Carmen J. |
description | Motivation: Recently there has been increasing interest in the effects of cell mixture on the measurement of DNA methylation, specifically the extent to which small perturbations in cell mixture proportions can register as changes in DNA methylation. A recently published set of statistical methods exploits this association to infer changes in cell mixture proportions, and these methods are presently being applied to adjust for cell mixture effect in the context of epigenome-wide association studies. However, these adjustments require the existence of reference datasets, which may be laborious or expensive to collect. For some tissues such as placenta, saliva, adipose or tumor tissue, the relevant underlying cell types may not be known.
Results: We propose a method for conducting epigenome-wide association studies analysis when a reference dataset is unavailable, including a bootstrap method for estimating standard errors. We demonstrate via simulation study and several real data analyses that our proposed method can perform as well as or better than methods that make explicit use of reference datasets. In particular, it may adjust for detailed cell type differences that may be unavailable even in existing reference datasets.
Availability and implementation: Software is available in the R package RefFreeEWAS. Data for three of four examples were obtained from Gene Expression Omnibus (GEO), accession numbers GSE37008, GSE42861 and GSE30601, while reference data were obtained from GEO accession number GSE39981.
Contact:
andres.houseman@oregonstate.edu
Supplementary information:
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btu029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4016702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btu029</oup_id><sourcerecordid>1524168895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-fc04b320c4e9891105b3809d1748bd82970f687e2937d6f4d6338deeca72dc5d3</originalsourceid><addsrcrecordid>eNqNkV9LHTEQxYMoaq0fQcmjL6v5u5u8FERbW5QWSvscsslEI7ub2yRber-9e7lW9M2nGZjfnDnDQeiEknNKNL_oY4pTSHm0Nbpy0deZML2DDqloScOI1LtLz9uuEYrwA_ShlEdCJBVC7KMDJoSkLWOH6PYnBMgwOWhCBsAOhgGP8V-dM2DrH-dSR5hqwXHCdrLDusSCU8DX3y_xCPVhPSz304S9rfYj2gt2KHD8XI_Q7y-ff119be5-3Hy7urxrnJS0NsER0XNGnACtNKVE9lwR7WknVO8V0x0JreqAad75Ngjfcq48gLMd8056foQ-bXVXcz-Cd4u_bAezynG0eW2SjebtZIoP5j79NYLQtiNsETh7FsjpzwylmjGWzed2gjQXQyUXiupOyXegTNBWKb1B5RZ1OZWSIbw4osRsMjNvMzPbzJa909fvvGz9D2kByBZI8-qdmk9V8apu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524168895</pqid></control><display><type>article</type><title>Reference-free cell mixture adjustments in analysis of DNA methylation data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Houseman, Eugene Andres ; Molitor, John ; Marsit, Carmen J.</creator><creatorcontrib>Houseman, Eugene Andres ; Molitor, John ; Marsit, Carmen J.</creatorcontrib><description>Motivation: Recently there has been increasing interest in the effects of cell mixture on the measurement of DNA methylation, specifically the extent to which small perturbations in cell mixture proportions can register as changes in DNA methylation. A recently published set of statistical methods exploits this association to infer changes in cell mixture proportions, and these methods are presently being applied to adjust for cell mixture effect in the context of epigenome-wide association studies. However, these adjustments require the existence of reference datasets, which may be laborious or expensive to collect. For some tissues such as placenta, saliva, adipose or tumor tissue, the relevant underlying cell types may not be known.
Results: We propose a method for conducting epigenome-wide association studies analysis when a reference dataset is unavailable, including a bootstrap method for estimating standard errors. We demonstrate via simulation study and several real data analyses that our proposed method can perform as well as or better than methods that make explicit use of reference datasets. In particular, it may adjust for detailed cell type differences that may be unavailable even in existing reference datasets.
Availability and implementation: Software is available in the R package RefFreeEWAS. Data for three of four examples were obtained from Gene Expression Omnibus (GEO), accession numbers GSE37008, GSE42861 and GSE30601, while reference data were obtained from GEO accession number GSE39981.
Contact:
andres.houseman@oregonstate.edu
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btu029</identifier><identifier>PMID: 24451622</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>DNA Methylation ; Gene Expression ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Original Papers ; Sequence Analysis, DNA - methods ; Software</subject><ispartof>Bioinformatics, 2014-05, Vol.30 (10), p.1431-1439</ispartof><rights>The Author 2014. Published by Oxford University Press. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-fc04b320c4e9891105b3809d1748bd82970f687e2937d6f4d6338deeca72dc5d3</citedby><cites>FETCH-LOGICAL-c551t-fc04b320c4e9891105b3809d1748bd82970f687e2937d6f4d6338deeca72dc5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016702/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016702/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,1601,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24451622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houseman, Eugene Andres</creatorcontrib><creatorcontrib>Molitor, John</creatorcontrib><creatorcontrib>Marsit, Carmen J.</creatorcontrib><title>Reference-free cell mixture adjustments in analysis of DNA methylation data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Recently there has been increasing interest in the effects of cell mixture on the measurement of DNA methylation, specifically the extent to which small perturbations in cell mixture proportions can register as changes in DNA methylation. A recently published set of statistical methods exploits this association to infer changes in cell mixture proportions, and these methods are presently being applied to adjust for cell mixture effect in the context of epigenome-wide association studies. However, these adjustments require the existence of reference datasets, which may be laborious or expensive to collect. For some tissues such as placenta, saliva, adipose or tumor tissue, the relevant underlying cell types may not be known.
Results: We propose a method for conducting epigenome-wide association studies analysis when a reference dataset is unavailable, including a bootstrap method for estimating standard errors. We demonstrate via simulation study and several real data analyses that our proposed method can perform as well as or better than methods that make explicit use of reference datasets. In particular, it may adjust for detailed cell type differences that may be unavailable even in existing reference datasets.
Availability and implementation: Software is available in the R package RefFreeEWAS. Data for three of four examples were obtained from Gene Expression Omnibus (GEO), accession numbers GSE37008, GSE42861 and GSE30601, while reference data were obtained from GEO accession number GSE39981.
Contact:
andres.houseman@oregonstate.edu
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><subject>DNA Methylation</subject><subject>Gene Expression</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Original Papers</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV9LHTEQxYMoaq0fQcmjL6v5u5u8FERbW5QWSvscsslEI7ub2yRber-9e7lW9M2nGZjfnDnDQeiEknNKNL_oY4pTSHm0Nbpy0deZML2DDqloScOI1LtLz9uuEYrwA_ShlEdCJBVC7KMDJoSkLWOH6PYnBMgwOWhCBsAOhgGP8V-dM2DrH-dSR5hqwXHCdrLDusSCU8DX3y_xCPVhPSz304S9rfYj2gt2KHD8XI_Q7y-ff119be5-3Hy7urxrnJS0NsER0XNGnACtNKVE9lwR7WknVO8V0x0JreqAad75Ngjfcq48gLMd8056foQ-bXVXcz-Cd4u_bAezynG0eW2SjebtZIoP5j79NYLQtiNsETh7FsjpzwylmjGWzed2gjQXQyUXiupOyXegTNBWKb1B5RZ1OZWSIbw4osRsMjNvMzPbzJa909fvvGz9D2kByBZI8-qdmk9V8apu</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Houseman, Eugene Andres</creator><creator>Molitor, John</creator><creator>Marsit, Carmen J.</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20140515</creationdate><title>Reference-free cell mixture adjustments in analysis of DNA methylation data</title><author>Houseman, Eugene Andres ; Molitor, John ; Marsit, Carmen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-fc04b320c4e9891105b3809d1748bd82970f687e2937d6f4d6338deeca72dc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>DNA Methylation</topic><topic>Gene Expression</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Original Papers</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houseman, Eugene Andres</creatorcontrib><creatorcontrib>Molitor, John</creatorcontrib><creatorcontrib>Marsit, Carmen J.</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houseman, Eugene Andres</au><au>Molitor, John</au><au>Marsit, Carmen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reference-free cell mixture adjustments in analysis of DNA methylation data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2014-05-15</date><risdate>2014</risdate><volume>30</volume><issue>10</issue><spage>1431</spage><epage>1439</epage><pages>1431-1439</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Motivation: Recently there has been increasing interest in the effects of cell mixture on the measurement of DNA methylation, specifically the extent to which small perturbations in cell mixture proportions can register as changes in DNA methylation. A recently published set of statistical methods exploits this association to infer changes in cell mixture proportions, and these methods are presently being applied to adjust for cell mixture effect in the context of epigenome-wide association studies. However, these adjustments require the existence of reference datasets, which may be laborious or expensive to collect. For some tissues such as placenta, saliva, adipose or tumor tissue, the relevant underlying cell types may not be known.
Results: We propose a method for conducting epigenome-wide association studies analysis when a reference dataset is unavailable, including a bootstrap method for estimating standard errors. We demonstrate via simulation study and several real data analyses that our proposed method can perform as well as or better than methods that make explicit use of reference datasets. In particular, it may adjust for detailed cell type differences that may be unavailable even in existing reference datasets.
Availability and implementation: Software is available in the R package RefFreeEWAS. Data for three of four examples were obtained from Gene Expression Omnibus (GEO), accession numbers GSE37008, GSE42861 and GSE30601, while reference data were obtained from GEO accession number GSE39981.
Contact:
andres.houseman@oregonstate.edu
Supplementary information:
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24451622</pmid><doi>10.1093/bioinformatics/btu029</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2014-05, Vol.30 (10), p.1431-1439 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4016702 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | DNA Methylation Gene Expression High-Throughput Nucleotide Sequencing - methods Humans Original Papers Sequence Analysis, DNA - methods Software |
title | Reference-free cell mixture adjustments in analysis of DNA methylation data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reference-free%20cell%20mixture%20adjustments%20in%20analysis%20of%20DNA%20methylation%20data&rft.jtitle=Bioinformatics&rft.au=Houseman,%20Eugene%20Andres&rft.date=2014-05-15&rft.volume=30&rft.issue=10&rft.spage=1431&rft.epage=1439&rft.pages=1431-1439&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btu029&rft_dat=%3Cproquest_pubme%3E1524168895%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524168895&rft_id=info:pmid/24451622&rft_oup_id=10.1093/bioinformatics/btu029&rfr_iscdi=true |