Using random walks to identify cancer-associated modules in expression data

The etiology of cancer involves a complex series of genetic and environmental conditions. To better represent and study the intricate genetics of cancer onset and progression, we construct a network of biological interactions to search for groups of genes that compose cancer-related modules. Three c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioData mining 2013-10, Vol.6 (1), p.17-17, Article 17
Hauptverfasser: Petrochilos, Deanna, Shojaie, Ali, Gennari, John, Abernethy, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 17
container_title BioData mining
container_volume 6
creator Petrochilos, Deanna
Shojaie, Ali
Gennari, John
Abernethy, Neil
description The etiology of cancer involves a complex series of genetic and environmental conditions. To better represent and study the intricate genetics of cancer onset and progression, we construct a network of biological interactions to search for groups of genes that compose cancer-related modules. Three cancer expression datasets are investigated to prioritize genes and interactions associated with cancer outcomes. Using a graph-based approach to search for communities of phenotype-related genes in microarray data, we find modules of genes associated with cancer phenotypes in a weighted interaction network. We implement Walktrap, a random-walk-based community detection algorithm, to identify biological modules predisposing to tumor growth in 22 hepatocellular carcinoma samples (GSE14520), adenoma development in 32 colorectal cancer samples (GSE8671), and prognosis in 198 breast cancer patients (GSE7390). For each study, we find the best scoring partitions under a maximum cluster size of 200 nodes. Significant modules highlight groups of genes that are functionally related to cancer and show promise as therapeutic targets; these include interactions among transcription factors (SPIB, RPS6KA2 and RPS6KA6), cell-cycle regulatory genes (BRSK1, WEE1 and CDC25C), modulators of the cell-cycle and proliferation (CBLC and IRS2) and genes that regulate and participate in the map-kinase pathway (MAPK9, DUSP1, DUSP9, RIPK2). To assess the performance of Walktrap to find genomic modules (Walktrap-GM), we evaluate our results against other tools recently developed to discover disease modules in biological networks. Compared with other highly cited module-finding tools, jActiveModules and Matisse, Walktrap-GM shows strong performance in the discovery of modules enriched with known cancer genes. These results demonstrate that the Walktrap-GM algorithm identifies modules significantly enriched with cancer genes, their joint effects and promising candidate genes. The approach performs well when evaluated against similar tools and smaller overall module size allows for more specific functional annotation and facilitates the interpretation of these modules.
doi_str_mv 10.1186/1756-0381-6-17
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4015830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534769243</galeid><sourcerecordid>A534769243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-43bab8ff2e5ed7f1d5e0e1f4f94101f78a05219e43c693f2dbfe60711d8271a83</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqVw5YgscSmHFI-_kr0gVRUfFZWQgJ4trz1eXBJ7sRNo_z2OKEsXVT54NH7mnfHobZrnQE8AevUaOqlayntoVQvdg-Zwl3h4Jz5onpRyRaliVPLHzQETwHqm4LD5eFlC3JBsoksj-WWG74VMiQSHcQr-hlgTLebWlJJsMBM6MiY3D1hIiASvtxlLCSkSZybztHnkzVDw2e191Fy-e_v17EN78en9-dnpRWulZFMr-Nqse-8ZSnSdByeRInjhVwIo-K43VDJYoeBWrbhnbu1R0Q7A9awD0_Oj5s0f3e28HtHZOmo2g97mMJp8o5MJev8lhm96k35qQUH2nFaB41uBnH7MWCY9hmJxGEzENBcNQgkJnAGv6Mv_0Ks051i_VynZqzoy7_5RGzOgDtGn2tcuovpUctGpFROL1sk9VD0Ox2BTRB9qfq_g1V5BZSa8njZmLkWff_l8r7jNqZSMfrcPoHqxil7coBc36CWuBS_ubnGH__UG_w3_2bcX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458641037</pqid></control><display><type>article</type><title>Using random walks to identify cancer-associated modules in expression data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Petrochilos, Deanna ; Shojaie, Ali ; Gennari, John ; Abernethy, Neil</creator><creatorcontrib>Petrochilos, Deanna ; Shojaie, Ali ; Gennari, John ; Abernethy, Neil</creatorcontrib><description>The etiology of cancer involves a complex series of genetic and environmental conditions. To better represent and study the intricate genetics of cancer onset and progression, we construct a network of biological interactions to search for groups of genes that compose cancer-related modules. Three cancer expression datasets are investigated to prioritize genes and interactions associated with cancer outcomes. Using a graph-based approach to search for communities of phenotype-related genes in microarray data, we find modules of genes associated with cancer phenotypes in a weighted interaction network. We implement Walktrap, a random-walk-based community detection algorithm, to identify biological modules predisposing to tumor growth in 22 hepatocellular carcinoma samples (GSE14520), adenoma development in 32 colorectal cancer samples (GSE8671), and prognosis in 198 breast cancer patients (GSE7390). For each study, we find the best scoring partitions under a maximum cluster size of 200 nodes. Significant modules highlight groups of genes that are functionally related to cancer and show promise as therapeutic targets; these include interactions among transcription factors (SPIB, RPS6KA2 and RPS6KA6), cell-cycle regulatory genes (BRSK1, WEE1 and CDC25C), modulators of the cell-cycle and proliferation (CBLC and IRS2) and genes that regulate and participate in the map-kinase pathway (MAPK9, DUSP1, DUSP9, RIPK2). To assess the performance of Walktrap to find genomic modules (Walktrap-GM), we evaluate our results against other tools recently developed to discover disease modules in biological networks. Compared with other highly cited module-finding tools, jActiveModules and Matisse, Walktrap-GM shows strong performance in the discovery of modules enriched with known cancer genes. These results demonstrate that the Walktrap-GM algorithm identifies modules significantly enriched with cancer genes, their joint effects and promising candidate genes. The approach performs well when evaluated against similar tools and smaller overall module size allows for more specific functional annotation and facilitates the interpretation of these modules.</description><identifier>ISSN: 1756-0381</identifier><identifier>EISSN: 1756-0381</identifier><identifier>DOI: 10.1186/1756-0381-6-17</identifier><identifier>PMID: 24128261</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Cancer ; Cell adhesion &amp; migration ; Cell cycle ; Colorectal cancer ; Computational biology ; DNA binding proteins ; Gene expression ; Genetic aspects ; Genetic transcription ; Genomes ; Genomics ; Hypotheses ; Liver cancer ; Methodology ; Methods ; Oncology, Experimental ; Programming languages ; Proteins ; Studies</subject><ispartof>BioData mining, 2013-10, Vol.6 (1), p.17-17, Article 17</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Petrochilos et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Petrochilos et al.; licensee BioMed Central Ltd. 2013 Petrochilos et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-43bab8ff2e5ed7f1d5e0e1f4f94101f78a05219e43c693f2dbfe60711d8271a83</citedby><cites>FETCH-LOGICAL-c552t-43bab8ff2e5ed7f1d5e0e1f4f94101f78a05219e43c693f2dbfe60711d8271a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015830/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015830/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24128261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrochilos, Deanna</creatorcontrib><creatorcontrib>Shojaie, Ali</creatorcontrib><creatorcontrib>Gennari, John</creatorcontrib><creatorcontrib>Abernethy, Neil</creatorcontrib><title>Using random walks to identify cancer-associated modules in expression data</title><title>BioData mining</title><addtitle>BioData Min</addtitle><description>The etiology of cancer involves a complex series of genetic and environmental conditions. To better represent and study the intricate genetics of cancer onset and progression, we construct a network of biological interactions to search for groups of genes that compose cancer-related modules. Three cancer expression datasets are investigated to prioritize genes and interactions associated with cancer outcomes. Using a graph-based approach to search for communities of phenotype-related genes in microarray data, we find modules of genes associated with cancer phenotypes in a weighted interaction network. We implement Walktrap, a random-walk-based community detection algorithm, to identify biological modules predisposing to tumor growth in 22 hepatocellular carcinoma samples (GSE14520), adenoma development in 32 colorectal cancer samples (GSE8671), and prognosis in 198 breast cancer patients (GSE7390). For each study, we find the best scoring partitions under a maximum cluster size of 200 nodes. Significant modules highlight groups of genes that are functionally related to cancer and show promise as therapeutic targets; these include interactions among transcription factors (SPIB, RPS6KA2 and RPS6KA6), cell-cycle regulatory genes (BRSK1, WEE1 and CDC25C), modulators of the cell-cycle and proliferation (CBLC and IRS2) and genes that regulate and participate in the map-kinase pathway (MAPK9, DUSP1, DUSP9, RIPK2). To assess the performance of Walktrap to find genomic modules (Walktrap-GM), we evaluate our results against other tools recently developed to discover disease modules in biological networks. Compared with other highly cited module-finding tools, jActiveModules and Matisse, Walktrap-GM shows strong performance in the discovery of modules enriched with known cancer genes. These results demonstrate that the Walktrap-GM algorithm identifies modules significantly enriched with cancer genes, their joint effects and promising candidate genes. The approach performs well when evaluated against similar tools and smaller overall module size allows for more specific functional annotation and facilitates the interpretation of these modules.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cancer</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell cycle</subject><subject>Colorectal cancer</subject><subject>Computational biology</subject><subject>DNA binding proteins</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hypotheses</subject><subject>Liver cancer</subject><subject>Methodology</subject><subject>Methods</subject><subject>Oncology, Experimental</subject><subject>Programming languages</subject><subject>Proteins</subject><subject>Studies</subject><issn>1756-0381</issn><issn>1756-0381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkk1v1DAQhiMEoqVw5YgscSmHFI-_kr0gVRUfFZWQgJ4trz1eXBJ7sRNo_z2OKEsXVT54NH7mnfHobZrnQE8AevUaOqlayntoVQvdg-Zwl3h4Jz5onpRyRaliVPLHzQETwHqm4LD5eFlC3JBsoksj-WWG74VMiQSHcQr-hlgTLebWlJJsMBM6MiY3D1hIiASvtxlLCSkSZybztHnkzVDw2e191Fy-e_v17EN78en9-dnpRWulZFMr-Nqse-8ZSnSdByeRInjhVwIo-K43VDJYoeBWrbhnbu1R0Q7A9awD0_Oj5s0f3e28HtHZOmo2g97mMJp8o5MJev8lhm96k35qQUH2nFaB41uBnH7MWCY9hmJxGEzENBcNQgkJnAGv6Mv_0Ks051i_VynZqzoy7_5RGzOgDtGn2tcuovpUctGpFROL1sk9VD0Ox2BTRB9qfq_g1V5BZSa8njZmLkWff_l8r7jNqZSMfrcPoHqxil7coBc36CWuBS_ubnGH__UG_w3_2bcX</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Petrochilos, Deanna</creator><creator>Shojaie, Ali</creator><creator>Gennari, John</creator><creator>Abernethy, Neil</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20131015</creationdate><title>Using random walks to identify cancer-associated modules in expression data</title><author>Petrochilos, Deanna ; Shojaie, Ali ; Gennari, John ; Abernethy, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-43bab8ff2e5ed7f1d5e0e1f4f94101f78a05219e43c693f2dbfe60711d8271a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cancer</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell cycle</topic><topic>Colorectal cancer</topic><topic>Computational biology</topic><topic>DNA binding proteins</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hypotheses</topic><topic>Liver cancer</topic><topic>Methodology</topic><topic>Methods</topic><topic>Oncology, Experimental</topic><topic>Programming languages</topic><topic>Proteins</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrochilos, Deanna</creatorcontrib><creatorcontrib>Shojaie, Ali</creatorcontrib><creatorcontrib>Gennari, John</creatorcontrib><creatorcontrib>Abernethy, Neil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioData mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrochilos, Deanna</au><au>Shojaie, Ali</au><au>Gennari, John</au><au>Abernethy, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using random walks to identify cancer-associated modules in expression data</atitle><jtitle>BioData mining</jtitle><addtitle>BioData Min</addtitle><date>2013-10-15</date><risdate>2013</risdate><volume>6</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><artnum>17</artnum><issn>1756-0381</issn><eissn>1756-0381</eissn><abstract>The etiology of cancer involves a complex series of genetic and environmental conditions. To better represent and study the intricate genetics of cancer onset and progression, we construct a network of biological interactions to search for groups of genes that compose cancer-related modules. Three cancer expression datasets are investigated to prioritize genes and interactions associated with cancer outcomes. Using a graph-based approach to search for communities of phenotype-related genes in microarray data, we find modules of genes associated with cancer phenotypes in a weighted interaction network. We implement Walktrap, a random-walk-based community detection algorithm, to identify biological modules predisposing to tumor growth in 22 hepatocellular carcinoma samples (GSE14520), adenoma development in 32 colorectal cancer samples (GSE8671), and prognosis in 198 breast cancer patients (GSE7390). For each study, we find the best scoring partitions under a maximum cluster size of 200 nodes. Significant modules highlight groups of genes that are functionally related to cancer and show promise as therapeutic targets; these include interactions among transcription factors (SPIB, RPS6KA2 and RPS6KA6), cell-cycle regulatory genes (BRSK1, WEE1 and CDC25C), modulators of the cell-cycle and proliferation (CBLC and IRS2) and genes that regulate and participate in the map-kinase pathway (MAPK9, DUSP1, DUSP9, RIPK2). To assess the performance of Walktrap to find genomic modules (Walktrap-GM), we evaluate our results against other tools recently developed to discover disease modules in biological networks. Compared with other highly cited module-finding tools, jActiveModules and Matisse, Walktrap-GM shows strong performance in the discovery of modules enriched with known cancer genes. These results demonstrate that the Walktrap-GM algorithm identifies modules significantly enriched with cancer genes, their joint effects and promising candidate genes. The approach performs well when evaluated against similar tools and smaller overall module size allows for more specific functional annotation and facilitates the interpretation of these modules.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24128261</pmid><doi>10.1186/1756-0381-6-17</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-0381
ispartof BioData mining, 2013-10, Vol.6 (1), p.17-17, Article 17
issn 1756-0381
1756-0381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4015830
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central
subjects Algorithms
Analysis
Cancer
Cell adhesion & migration
Cell cycle
Colorectal cancer
Computational biology
DNA binding proteins
Gene expression
Genetic aspects
Genetic transcription
Genomes
Genomics
Hypotheses
Liver cancer
Methodology
Methods
Oncology, Experimental
Programming languages
Proteins
Studies
title Using random walks to identify cancer-associated modules in expression data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20random%20walks%20to%20identify%20cancer-associated%20modules%20in%20expression%20data&rft.jtitle=BioData%20mining&rft.au=Petrochilos,%20Deanna&rft.date=2013-10-15&rft.volume=6&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.artnum=17&rft.issn=1756-0381&rft.eissn=1756-0381&rft_id=info:doi/10.1186/1756-0381-6-17&rft_dat=%3Cgale_pubme%3EA534769243%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458641037&rft_id=info:pmid/24128261&rft_galeid=A534769243&rfr_iscdi=true