The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6

Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradioldependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidops...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2014-05, Vol.165 (1), p.319-334
Hauptverfasser: Pérez-Salamó, Imma, Papdi, Csaba, Rigo, Gábor, Zsigmond, Laura, Vilela, Belmiro, Lumbreras, Victoria, Nagy, István, Horváth, Balázs, Domoki, Mónika, Darula, Zsuzsa, Medzihradszky, Katalin, Bögre, László, Koncz, Csaba, Szabados, László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1
container_start_page 319
container_title Plant physiology (Bethesda)
container_volume 165
creator Pérez-Salamó, Imma
Papdi, Csaba
Rigo, Gábor
Zsigmond, Laura
Vilela, Belmiro
Lumbreras, Victoria
Nagy, István
Horváth, Balázs
Domoki, Mónika
Darula, Zsuzsa
Medzihradszky, Katalin
Bögre, László
Koncz, Csaba
Szabados, László
description Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradioldependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.
doi_str_mv 10.1104/pp.114.237891
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4012591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43190955</jstor_id><sourcerecordid>43190955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-ad3f61f81a9f7557b881568530d83dedfcf99f0ffdb34ce0335763e70cf344553</originalsourceid><addsrcrecordid>eNpVkUFvEzEQhS0EomnhyBHkI5ct9tre9V6QoojSqq1akXC2HHucuGzWW9up6I_of8ZNSgSnN9L79OyZh9AHSk4pJfzLOBblpzVrZUdfoQkVrK5qweVrNCGkzETK7ggdp3RHCKGM8rfoqOZN20ghJ-hpsQZ8Djrj-TqYX_hMmxwinvIpnoXBQUx4rvuMF6GHqAcDWA8WXyT8A1bbXmewePmIb357q7N_ADzPEVLaQbkkX_scVjBUU1PcHX0bQwY_4Es_6AQJX99esh1ehuYdeuN0n-D9i56gn2ffFrPz6urm-8VselUZQWSutGWuoU5S3blWiHYpJRVlH0asZBasM67rHHHOLhk3QBgTbcOgJcYxzoVgJ-jrPnfcLjdgDQw56l6N0W90fFRBe_W_M_i1WoUHxQmtRUdLwOeXgBjut5Cy2vhkoO_1AGGbVP18a94y2RS02qMmhpQiuMMzlKjnCtU4FuVqX2HhP_37twP9t7MCfNwDd6lUdfA5ox3pynJ_AOVroSY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000147386</pqid></control><display><type>article</type><title>The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pérez-Salamó, Imma ; Papdi, Csaba ; Rigo, Gábor ; Zsigmond, Laura ; Vilela, Belmiro ; Lumbreras, Victoria ; Nagy, István ; Horváth, Balázs ; Domoki, Mónika ; Darula, Zsuzsa ; Medzihradszky, Katalin ; Bögre, László ; Koncz, Csaba ; Szabados, László</creator><creatorcontrib>Pérez-Salamó, Imma ; Papdi, Csaba ; Rigo, Gábor ; Zsigmond, Laura ; Vilela, Belmiro ; Lumbreras, Victoria ; Nagy, István ; Horváth, Balázs ; Domoki, Mónika ; Darula, Zsuzsa ; Medzihradszky, Katalin ; Bögre, László ; Koncz, Csaba ; Szabados, László</creatorcontrib><description>Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradioldependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.114.237891</identifier><identifier>PMID: 24676858</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>abiotic stress ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cell culture techniques ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cells, Cultured ; DNA, Bacterial - genetics ; Estradiol - pharmacology ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genes, Plant ; heat shock proteins ; Heat stress disorders ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional - genetics ; Oxidation-Reduction - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Phosphorylation ; Phosphorylation - drug effects ; Plant cells ; Plants ; Plants, Genetically Modified ; Protein Binding - drug effects ; Protein Multimerization - drug effects ; Salinity ; Salt tolerance ; Salt Tolerance - drug effects ; Salt Tolerance - genetics ; Shock heating ; SIGNALING AND RESPONSE ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic - drug effects ; Transformation, Genetic - drug effects</subject><ispartof>Plant physiology (Bethesda), 2014-05, Vol.165 (1), p.319-334</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All Rights Reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-ad3f61f81a9f7557b881568530d83dedfcf99f0ffdb34ce0335763e70cf344553</citedby><cites>FETCH-LOGICAL-c508t-ad3f61f81a9f7557b881568530d83dedfcf99f0ffdb34ce0335763e70cf344553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43190955$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43190955$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24676858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Salamó, Imma</creatorcontrib><creatorcontrib>Papdi, Csaba</creatorcontrib><creatorcontrib>Rigo, Gábor</creatorcontrib><creatorcontrib>Zsigmond, Laura</creatorcontrib><creatorcontrib>Vilela, Belmiro</creatorcontrib><creatorcontrib>Lumbreras, Victoria</creatorcontrib><creatorcontrib>Nagy, István</creatorcontrib><creatorcontrib>Horváth, Balázs</creatorcontrib><creatorcontrib>Domoki, Mónika</creatorcontrib><creatorcontrib>Darula, Zsuzsa</creatorcontrib><creatorcontrib>Medzihradszky, Katalin</creatorcontrib><creatorcontrib>Bögre, László</creatorcontrib><creatorcontrib>Koncz, Csaba</creatorcontrib><creatorcontrib>Szabados, László</creatorcontrib><title>The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradioldependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.</description><subject>abiotic stress</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cell culture techniques</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cells, Cultured</subject><subject>DNA, Bacterial - genetics</subject><subject>Estradiol - pharmacology</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>heat shock proteins</subject><subject>Heat stress disorders</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional - genetics</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Protein Binding - drug effects</subject><subject>Protein Multimerization - drug effects</subject><subject>Salinity</subject><subject>Salt tolerance</subject><subject>Salt Tolerance - drug effects</subject><subject>Salt Tolerance - genetics</subject><subject>Shock heating</subject><subject>SIGNALING AND RESPONSE</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transformation, Genetic - drug effects</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFvEzEQhS0EomnhyBHkI5ct9tre9V6QoojSqq1akXC2HHucuGzWW9up6I_of8ZNSgSnN9L79OyZh9AHSk4pJfzLOBblpzVrZUdfoQkVrK5qweVrNCGkzETK7ggdp3RHCKGM8rfoqOZN20ghJ-hpsQZ8Djrj-TqYX_hMmxwinvIpnoXBQUx4rvuMF6GHqAcDWA8WXyT8A1bbXmewePmIb357q7N_ADzPEVLaQbkkX_scVjBUU1PcHX0bQwY_4Es_6AQJX99esh1ehuYdeuN0n-D9i56gn2ffFrPz6urm-8VselUZQWSutGWuoU5S3blWiHYpJRVlH0asZBasM67rHHHOLhk3QBgTbcOgJcYxzoVgJ-jrPnfcLjdgDQw56l6N0W90fFRBe_W_M_i1WoUHxQmtRUdLwOeXgBjut5Cy2vhkoO_1AGGbVP18a94y2RS02qMmhpQiuMMzlKjnCtU4FuVqX2HhP_37twP9t7MCfNwDd6lUdfA5ox3pynJ_AOVroSY</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Pérez-Salamó, Imma</creator><creator>Papdi, Csaba</creator><creator>Rigo, Gábor</creator><creator>Zsigmond, Laura</creator><creator>Vilela, Belmiro</creator><creator>Lumbreras, Victoria</creator><creator>Nagy, István</creator><creator>Horváth, Balázs</creator><creator>Domoki, Mónika</creator><creator>Darula, Zsuzsa</creator><creator>Medzihradszky, Katalin</creator><creator>Bögre, László</creator><creator>Koncz, Csaba</creator><creator>Szabados, László</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140501</creationdate><title>The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6</title><author>Pérez-Salamó, Imma ; Papdi, Csaba ; Rigo, Gábor ; Zsigmond, Laura ; Vilela, Belmiro ; Lumbreras, Victoria ; Nagy, István ; Horváth, Balázs ; Domoki, Mónika ; Darula, Zsuzsa ; Medzihradszky, Katalin ; Bögre, László ; Koncz, Csaba ; Szabados, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-ad3f61f81a9f7557b881568530d83dedfcf99f0ffdb34ce0335763e70cf344553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>abiotic stress</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cell culture techniques</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cells, Cultured</topic><topic>DNA, Bacterial - genetics</topic><topic>Estradiol - pharmacology</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>heat shock proteins</topic><topic>Heat stress disorders</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional - genetics</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Protein Binding - drug effects</topic><topic>Protein Multimerization - drug effects</topic><topic>Salinity</topic><topic>Salt tolerance</topic><topic>Salt Tolerance - drug effects</topic><topic>Salt Tolerance - genetics</topic><topic>Shock heating</topic><topic>SIGNALING AND RESPONSE</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transformation, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Salamó, Imma</creatorcontrib><creatorcontrib>Papdi, Csaba</creatorcontrib><creatorcontrib>Rigo, Gábor</creatorcontrib><creatorcontrib>Zsigmond, Laura</creatorcontrib><creatorcontrib>Vilela, Belmiro</creatorcontrib><creatorcontrib>Lumbreras, Victoria</creatorcontrib><creatorcontrib>Nagy, István</creatorcontrib><creatorcontrib>Horváth, Balázs</creatorcontrib><creatorcontrib>Domoki, Mónika</creatorcontrib><creatorcontrib>Darula, Zsuzsa</creatorcontrib><creatorcontrib>Medzihradszky, Katalin</creatorcontrib><creatorcontrib>Bögre, László</creatorcontrib><creatorcontrib>Koncz, Csaba</creatorcontrib><creatorcontrib>Szabados, László</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Salamó, Imma</au><au>Papdi, Csaba</au><au>Rigo, Gábor</au><au>Zsigmond, Laura</au><au>Vilela, Belmiro</au><au>Lumbreras, Victoria</au><au>Nagy, István</au><au>Horváth, Balázs</au><au>Domoki, Mónika</au><au>Darula, Zsuzsa</au><au>Medzihradszky, Katalin</au><au>Bögre, László</au><au>Koncz, Csaba</au><au>Szabados, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>165</volume><issue>1</issue><spage>319</spage><epage>334</epage><pages>319-334</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradioldependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>24676858</pmid><doi>10.1104/pp.114.237891</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2014-05, Vol.165 (1), p.319-334
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4012591
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects abiotic stress
Amino Acid Sequence
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Cell culture techniques
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cells, Cultured
DNA, Bacterial - genetics
Estradiol - pharmacology
Gene Expression Regulation, Plant - drug effects
Genes
Genes, Plant
heat shock proteins
Heat stress disorders
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase Kinases - metabolism
Mitogen-Activated Protein Kinases - metabolism
Molecular Sequence Data
Mutagenesis, Insertional - genetics
Oxidation-Reduction - drug effects
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - genetics
Phosphorylation
Phosphorylation - drug effects
Plant cells
Plants
Plants, Genetically Modified
Protein Binding - drug effects
Protein Multimerization - drug effects
Salinity
Salt tolerance
Salt Tolerance - drug effects
Salt Tolerance - genetics
Shock heating
SIGNALING AND RESPONSE
Sodium Chloride - pharmacology
Stress, Physiological - drug effects
Stress, Physiological - genetics
Transcription factors
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic - drug effects
Transformation, Genetic - drug effects
title The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Heat%20Shock%20Factor%20A4A%20Confers%20Salt%20Tolerance%20and%20Is%20Regulated%20by%20Oxidative%20Stress%20and%20the%20Mitogen-Activated%20Protein%20Kinases%20MPK3%20and%20MPK6&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=P%C3%A9rez-Salam%C3%B3,%20Imma&rft.date=2014-05-01&rft.volume=165&rft.issue=1&rft.spage=319&rft.epage=334&rft.pages=319-334&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.114.237891&rft_dat=%3Cjstor_pubme%3E43190955%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000147386&rft_id=info:pmid/24676858&rft_jstor_id=43190955&rfr_iscdi=true