Geographic population structure analysis of worldwide human populations infers their biogeographical origins

The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-04, Vol.5 (1), p.3513-3513, Article 3513
Hauptverfasser: Elhaik, Eran, Tatarinova, Tatiana, Chebotarev, Dmitri, Piras, Ignazio S., Maria Calò, Carla, De Montis, Antonella, Atzori, Manuela, Marini, Monica, Tofanelli, Sergio, Francalacci, Paolo, Pagani, Luca, Tyler-Smith, Chris, Xue, Yali, Cucca, Francesco, Schurr, Theodore G., Gaieski, Jill B., Melendez, Carlalynne, Vilar, Miguel G., Owings, Amanda C., Gómez, Rocío, Fujita, Ricardo, Santos, Fabrício R., Comas, David, Balanovsky, Oleg, Balanovska, Elena, Zalloua, Pierre, Soodyall, Himla, Pitchappan, Ramasamy, GaneshPrasad, ArunKumar, Hammer, Michael, Matisoo-Smith, Lisa, Wells, R. Spencer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3513
container_issue 1
container_start_page 3513
container_title Nature communications
container_volume 5
creator Elhaik, Eran
Tatarinova, Tatiana
Chebotarev, Dmitri
Piras, Ignazio S.
Maria Calò, Carla
De Montis, Antonella
Atzori, Manuela
Marini, Monica
Tofanelli, Sergio
Francalacci, Paolo
Pagani, Luca
Tyler-Smith, Chris
Xue, Yali
Cucca, Francesco
Schurr, Theodore G.
Gaieski, Jill B.
Melendez, Carlalynne
Vilar, Miguel G.
Owings, Amanda C.
Gómez, Rocío
Fujita, Ricardo
Santos, Fabrício R.
Comas, David
Balanovsky, Oleg
Balanovska, Elena
Zalloua, Pierre
Soodyall, Himla
Pitchappan, Ramasamy
GaneshPrasad, ArunKumar
Hammer, Michael
Matisoo-Smith, Lisa
Wells, R. Spencer
description The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. Current methods to identify the geographical origin of humans based on DNA data present limited accuracy. Here, the authors develop a new algorithm, the Genographic Population Structure (GPS), and demonstrate its ability to place worldwide individuals within their country or, in some cases, village of origin.
doi_str_mv 10.1038/ncomms4513
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4007635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520343522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-2e514cb64ce78bba0e32129af18cddc58f5301642c1d94c8e1766519077b2a7f3</originalsourceid><addsrcrecordid>eNplkd-L1DAQx4Mo3nHei3-ABHwRZTWTH037Isihp3Dgiz6HNJ12c7RJTZo77r-3667rqoGQCfP5fieTIeQ5sLfARP0uuDhNWSoQj8g5ZxI2oLl4fBKfkcucb9m6RAO1lE_JGZe6Bq7YORmvMQ7Jzlvv6BznMtrFx0DzkopbSkJqgx0fss809vQ-prG79x3SbZlsOBFk6kOPKdNliz7R1sfh6GtHGpMffMjPyJPejhkvD-cF-f7p47erz5ubr9dfrj7cbJys5bLhqEC6tpIOdd22lqHgwBvbQ-26zqm6V4JBJbmDrpGuRtBVpaBhWrfc6l5ckPd737m0E3YOw5LsaObkJ5seTLTe_J0JfmuGeGckY7oSajWAvYHLxZmEDpOzyy_h8bLbnGluBCgl9Kp5dSia4o-CeTGTzw7H0QaMJRtQnAkpFOcr-vIf9DaWtH70SlWKC95w2Bm-PjwixZwT9scGgJnd7M2f2a_wi9OWj-jvSa_Amz2Q11QYMJ3U_N_uJ5LdvHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652329217</pqid></control><display><type>article</type><title>Geographic population structure analysis of worldwide human populations infers their biogeographical origins</title><source>MEDLINE</source><source>Nature Free</source><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Elhaik, Eran ; Tatarinova, Tatiana ; Chebotarev, Dmitri ; Piras, Ignazio S. ; Maria Calò, Carla ; De Montis, Antonella ; Atzori, Manuela ; Marini, Monica ; Tofanelli, Sergio ; Francalacci, Paolo ; Pagani, Luca ; Tyler-Smith, Chris ; Xue, Yali ; Cucca, Francesco ; Schurr, Theodore G. ; Gaieski, Jill B. ; Melendez, Carlalynne ; Vilar, Miguel G. ; Owings, Amanda C. ; Gómez, Rocío ; Fujita, Ricardo ; Santos, Fabrício R. ; Comas, David ; Balanovsky, Oleg ; Balanovska, Elena ; Zalloua, Pierre ; Soodyall, Himla ; Pitchappan, Ramasamy ; GaneshPrasad, ArunKumar ; Hammer, Michael ; Matisoo-Smith, Lisa ; Wells, R. Spencer</creator><creatorcontrib>Elhaik, Eran ; Tatarinova, Tatiana ; Chebotarev, Dmitri ; Piras, Ignazio S. ; Maria Calò, Carla ; De Montis, Antonella ; Atzori, Manuela ; Marini, Monica ; Tofanelli, Sergio ; Francalacci, Paolo ; Pagani, Luca ; Tyler-Smith, Chris ; Xue, Yali ; Cucca, Francesco ; Schurr, Theodore G. ; Gaieski, Jill B. ; Melendez, Carlalynne ; Vilar, Miguel G. ; Owings, Amanda C. ; Gómez, Rocío ; Fujita, Ricardo ; Santos, Fabrício R. ; Comas, David ; Balanovsky, Oleg ; Balanovska, Elena ; Zalloua, Pierre ; Soodyall, Himla ; Pitchappan, Ramasamy ; GaneshPrasad, ArunKumar ; Hammer, Michael ; Matisoo-Smith, Lisa ; Wells, R. Spencer ; Genographic Consortium ; The Genographic Consortium</creatorcontrib><description>The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. Current methods to identify the geographical origin of humans based on DNA data present limited accuracy. Here, the authors develop a new algorithm, the Genographic Population Structure (GPS), and demonstrate its ability to place worldwide individuals within their country or, in some cases, village of origin.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4513</identifier><identifier>PMID: 24781250</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/852 ; 631/208/457 ; Accuracy ; Algorithms ; Biogeography ; Biological sciences ; Datasets ; Europe ; Genetic diversity ; Genetics ; Genetics, Population - methods ; Genome, Human - genetics ; Genètica de poblacions humanes ; Genètica humana ; Geography ; Humanities and Social Sciences ; Humans ; Laboratories ; multidisciplinary ; Polymorphism, Single Nucleotide - genetics ; Science ; Science (multidisciplinary) ; Variació</subject><ispartof>Nature communications, 2014-04, Vol.5 (1), p.3513-3513, Article 3513</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><rights>Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-sa/3.0/"&gt;http://creativecommons.org/licenses/by-nc-sa/3.0/&lt;/a&gt;</rights><rights>Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-2e514cb64ce78bba0e32129af18cddc58f5301642c1d94c8e1766519077b2a7f3</citedby><cites>FETCH-LOGICAL-c484t-2e514cb64ce78bba0e32129af18cddc58f5301642c1d94c8e1766519077b2a7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007635/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,26951,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24781250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elhaik, Eran</creatorcontrib><creatorcontrib>Tatarinova, Tatiana</creatorcontrib><creatorcontrib>Chebotarev, Dmitri</creatorcontrib><creatorcontrib>Piras, Ignazio S.</creatorcontrib><creatorcontrib>Maria Calò, Carla</creatorcontrib><creatorcontrib>De Montis, Antonella</creatorcontrib><creatorcontrib>Atzori, Manuela</creatorcontrib><creatorcontrib>Marini, Monica</creatorcontrib><creatorcontrib>Tofanelli, Sergio</creatorcontrib><creatorcontrib>Francalacci, Paolo</creatorcontrib><creatorcontrib>Pagani, Luca</creatorcontrib><creatorcontrib>Tyler-Smith, Chris</creatorcontrib><creatorcontrib>Xue, Yali</creatorcontrib><creatorcontrib>Cucca, Francesco</creatorcontrib><creatorcontrib>Schurr, Theodore G.</creatorcontrib><creatorcontrib>Gaieski, Jill B.</creatorcontrib><creatorcontrib>Melendez, Carlalynne</creatorcontrib><creatorcontrib>Vilar, Miguel G.</creatorcontrib><creatorcontrib>Owings, Amanda C.</creatorcontrib><creatorcontrib>Gómez, Rocío</creatorcontrib><creatorcontrib>Fujita, Ricardo</creatorcontrib><creatorcontrib>Santos, Fabrício R.</creatorcontrib><creatorcontrib>Comas, David</creatorcontrib><creatorcontrib>Balanovsky, Oleg</creatorcontrib><creatorcontrib>Balanovska, Elena</creatorcontrib><creatorcontrib>Zalloua, Pierre</creatorcontrib><creatorcontrib>Soodyall, Himla</creatorcontrib><creatorcontrib>Pitchappan, Ramasamy</creatorcontrib><creatorcontrib>GaneshPrasad, ArunKumar</creatorcontrib><creatorcontrib>Hammer, Michael</creatorcontrib><creatorcontrib>Matisoo-Smith, Lisa</creatorcontrib><creatorcontrib>Wells, R. Spencer</creatorcontrib><creatorcontrib>Genographic Consortium</creatorcontrib><creatorcontrib>The Genographic Consortium</creatorcontrib><title>Geographic population structure analysis of worldwide human populations infers their biogeographical origins</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. Current methods to identify the geographical origin of humans based on DNA data present limited accuracy. Here, the authors develop a new algorithm, the Genographic Population Structure (GPS), and demonstrate its ability to place worldwide individuals within their country or, in some cases, village of origin.</description><subject>631/158/852</subject><subject>631/208/457</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biogeography</subject><subject>Biological sciences</subject><subject>Datasets</subject><subject>Europe</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genetics, Population - methods</subject><subject>Genome, Human - genetics</subject><subject>Genètica de poblacions humanes</subject><subject>Genètica humana</subject><subject>Geography</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Laboratories</subject><subject>multidisciplinary</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Variació</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNplkd-L1DAQx4Mo3nHei3-ABHwRZTWTH037Isihp3Dgiz6HNJ12c7RJTZo77r-3667rqoGQCfP5fieTIeQ5sLfARP0uuDhNWSoQj8g5ZxI2oLl4fBKfkcucb9m6RAO1lE_JGZe6Bq7YORmvMQ7Jzlvv6BznMtrFx0DzkopbSkJqgx0fss809vQ-prG79x3SbZlsOBFk6kOPKdNliz7R1sfh6GtHGpMffMjPyJPejhkvD-cF-f7p47erz5ubr9dfrj7cbJys5bLhqEC6tpIOdd22lqHgwBvbQ-26zqm6V4JBJbmDrpGuRtBVpaBhWrfc6l5ckPd737m0E3YOw5LsaObkJ5seTLTe_J0JfmuGeGckY7oSajWAvYHLxZmEDpOzyy_h8bLbnGluBCgl9Kp5dSia4o-CeTGTzw7H0QaMJRtQnAkpFOcr-vIf9DaWtH70SlWKC95w2Bm-PjwixZwT9scGgJnd7M2f2a_wi9OWj-jvSa_Amz2Q11QYMJ3U_N_uJ5LdvHY</recordid><startdate>20140429</startdate><enddate>20140429</enddate><creator>Elhaik, Eran</creator><creator>Tatarinova, Tatiana</creator><creator>Chebotarev, Dmitri</creator><creator>Piras, Ignazio S.</creator><creator>Maria Calò, Carla</creator><creator>De Montis, Antonella</creator><creator>Atzori, Manuela</creator><creator>Marini, Monica</creator><creator>Tofanelli, Sergio</creator><creator>Francalacci, Paolo</creator><creator>Pagani, Luca</creator><creator>Tyler-Smith, Chris</creator><creator>Xue, Yali</creator><creator>Cucca, Francesco</creator><creator>Schurr, Theodore G.</creator><creator>Gaieski, Jill B.</creator><creator>Melendez, Carlalynne</creator><creator>Vilar, Miguel G.</creator><creator>Owings, Amanda C.</creator><creator>Gómez, Rocío</creator><creator>Fujita, Ricardo</creator><creator>Santos, Fabrício R.</creator><creator>Comas, David</creator><creator>Balanovsky, Oleg</creator><creator>Balanovska, Elena</creator><creator>Zalloua, Pierre</creator><creator>Soodyall, Himla</creator><creator>Pitchappan, Ramasamy</creator><creator>GaneshPrasad, ArunKumar</creator><creator>Hammer, Michael</creator><creator>Matisoo-Smith, Lisa</creator><creator>Wells, R. Spencer</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20140429</creationdate><title>Geographic population structure analysis of worldwide human populations infers their biogeographical origins</title><author>Elhaik, Eran ; Tatarinova, Tatiana ; Chebotarev, Dmitri ; Piras, Ignazio S. ; Maria Calò, Carla ; De Montis, Antonella ; Atzori, Manuela ; Marini, Monica ; Tofanelli, Sergio ; Francalacci, Paolo ; Pagani, Luca ; Tyler-Smith, Chris ; Xue, Yali ; Cucca, Francesco ; Schurr, Theodore G. ; Gaieski, Jill B. ; Melendez, Carlalynne ; Vilar, Miguel G. ; Owings, Amanda C. ; Gómez, Rocío ; Fujita, Ricardo ; Santos, Fabrício R. ; Comas, David ; Balanovsky, Oleg ; Balanovska, Elena ; Zalloua, Pierre ; Soodyall, Himla ; Pitchappan, Ramasamy ; GaneshPrasad, ArunKumar ; Hammer, Michael ; Matisoo-Smith, Lisa ; Wells, R. Spencer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-2e514cb64ce78bba0e32129af18cddc58f5301642c1d94c8e1766519077b2a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/158/852</topic><topic>631/208/457</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biogeography</topic><topic>Biological sciences</topic><topic>Datasets</topic><topic>Europe</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genetics, Population - methods</topic><topic>Genome, Human - genetics</topic><topic>Genètica de poblacions humanes</topic><topic>Genètica humana</topic><topic>Geography</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Laboratories</topic><topic>multidisciplinary</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Variació</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elhaik, Eran</creatorcontrib><creatorcontrib>Tatarinova, Tatiana</creatorcontrib><creatorcontrib>Chebotarev, Dmitri</creatorcontrib><creatorcontrib>Piras, Ignazio S.</creatorcontrib><creatorcontrib>Maria Calò, Carla</creatorcontrib><creatorcontrib>De Montis, Antonella</creatorcontrib><creatorcontrib>Atzori, Manuela</creatorcontrib><creatorcontrib>Marini, Monica</creatorcontrib><creatorcontrib>Tofanelli, Sergio</creatorcontrib><creatorcontrib>Francalacci, Paolo</creatorcontrib><creatorcontrib>Pagani, Luca</creatorcontrib><creatorcontrib>Tyler-Smith, Chris</creatorcontrib><creatorcontrib>Xue, Yali</creatorcontrib><creatorcontrib>Cucca, Francesco</creatorcontrib><creatorcontrib>Schurr, Theodore G.</creatorcontrib><creatorcontrib>Gaieski, Jill B.</creatorcontrib><creatorcontrib>Melendez, Carlalynne</creatorcontrib><creatorcontrib>Vilar, Miguel G.</creatorcontrib><creatorcontrib>Owings, Amanda C.</creatorcontrib><creatorcontrib>Gómez, Rocío</creatorcontrib><creatorcontrib>Fujita, Ricardo</creatorcontrib><creatorcontrib>Santos, Fabrício R.</creatorcontrib><creatorcontrib>Comas, David</creatorcontrib><creatorcontrib>Balanovsky, Oleg</creatorcontrib><creatorcontrib>Balanovska, Elena</creatorcontrib><creatorcontrib>Zalloua, Pierre</creatorcontrib><creatorcontrib>Soodyall, Himla</creatorcontrib><creatorcontrib>Pitchappan, Ramasamy</creatorcontrib><creatorcontrib>GaneshPrasad, ArunKumar</creatorcontrib><creatorcontrib>Hammer, Michael</creatorcontrib><creatorcontrib>Matisoo-Smith, Lisa</creatorcontrib><creatorcontrib>Wells, R. Spencer</creatorcontrib><creatorcontrib>Genographic Consortium</creatorcontrib><creatorcontrib>The Genographic Consortium</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elhaik, Eran</au><au>Tatarinova, Tatiana</au><au>Chebotarev, Dmitri</au><au>Piras, Ignazio S.</au><au>Maria Calò, Carla</au><au>De Montis, Antonella</au><au>Atzori, Manuela</au><au>Marini, Monica</au><au>Tofanelli, Sergio</au><au>Francalacci, Paolo</au><au>Pagani, Luca</au><au>Tyler-Smith, Chris</au><au>Xue, Yali</au><au>Cucca, Francesco</au><au>Schurr, Theodore G.</au><au>Gaieski, Jill B.</au><au>Melendez, Carlalynne</au><au>Vilar, Miguel G.</au><au>Owings, Amanda C.</au><au>Gómez, Rocío</au><au>Fujita, Ricardo</au><au>Santos, Fabrício R.</au><au>Comas, David</au><au>Balanovsky, Oleg</au><au>Balanovska, Elena</au><au>Zalloua, Pierre</au><au>Soodyall, Himla</au><au>Pitchappan, Ramasamy</au><au>GaneshPrasad, ArunKumar</au><au>Hammer, Michael</au><au>Matisoo-Smith, Lisa</au><au>Wells, R. Spencer</au><aucorp>Genographic Consortium</aucorp><aucorp>The Genographic Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographic population structure analysis of worldwide human populations infers their biogeographical origins</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-04-29</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3513</spage><epage>3513</epage><pages>3513-3513</pages><artnum>3513</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. Current methods to identify the geographical origin of humans based on DNA data present limited accuracy. Here, the authors develop a new algorithm, the Genographic Population Structure (GPS), and demonstrate its ability to place worldwide individuals within their country or, in some cases, village of origin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24781250</pmid><doi>10.1038/ncomms4513</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-04, Vol.5 (1), p.3513-3513, Article 3513
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4007635
source MEDLINE; Nature Free; Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 631/158/852
631/208/457
Accuracy
Algorithms
Biogeography
Biological sciences
Datasets
Europe
Genetic diversity
Genetics
Genetics, Population - methods
Genome, Human - genetics
Genètica de poblacions humanes
Genètica humana
Geography
Humanities and Social Sciences
Humans
Laboratories
multidisciplinary
Polymorphism, Single Nucleotide - genetics
Science
Science (multidisciplinary)
Variació
title Geographic population structure analysis of worldwide human populations infers their biogeographical origins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographic%20population%20structure%20analysis%20of%20worldwide%20human%20populations%20infers%20their%20biogeographical%20origins&rft.jtitle=Nature%20communications&rft.au=Elhaik,%20Eran&rft.aucorp=Genographic%20Consortium&rft.date=2014-04-29&rft.volume=5&rft.issue=1&rft.spage=3513&rft.epage=3513&rft.pages=3513-3513&rft.artnum=3513&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4513&rft_dat=%3Cproquest_pubme%3E1520343522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652329217&rft_id=info:pmid/24781250&rfr_iscdi=true