Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation
To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts ha...
Gespeichert in:
Veröffentlicht in: | J. Am. Chem. Soc 2014-04, Vol.136 (13), p.4920-4926 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4926 |
---|---|
container_issue | 13 |
container_start_page | 4920 |
container_title | J. Am. Chem. Soc |
container_volume | 136 |
creator | Gorlin, Yelena Chung, Chia-Jung Benck, Jesse D Nordlund, Dennis Seitz, Linsey Weng, Tsu-Chien Sokaras, Dimosthenis Clemens, Bruce M Jaramillo, Thomas F |
description | To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO x , a promising OER catalyst. We conclusively demonstrate that adding Au to MnO x significantly enhances OER activity relative to MnO x in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO x catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO x that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO x . |
doi_str_mv | 10.1021/ja407581w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4004245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762062196</sourcerecordid><originalsourceid>FETCH-LOGICAL-a465t-cc16bb7cbb2dc6b3483390a4e0e64e5d3d3e19eccdb70e45dac58d7c95938e943</originalsourceid><addsrcrecordid>eNptkUFvEzEQhS0EoqFw4A8gCwkJDgF71-vdvVSqqlAqBfXSiqM1O54kjjZ2sZ2WnPjrOKREIHGyLH9-b-Y9xl5L8VGKSn5agxJt08mHJ2wim0pMG1npp2wihKimbafrE_YipXW5qqqTz9lJpbQuSD9hP2-9pZgyeOv8kl_5TBEwu-ATHyg_EHn-FfwSPCXi1z-cJV5YfhlGy29WkPmcwPIc-MyvwCNZfl6-37u844sQ-WwkzDEgZBh32SH_BsXhtxDsXV6yZwsYE716PE_Z7efZzcWX6fz68urifD4FpZs8RZR6GFochsqiHmrV1XUvQJEgraixta1J9oRoh1aQaixg09kW-6avO-pVfcrODrp322FDFsnnCKO5i24DcWcCOPPvi3crswz3Ru1DU00ReHsQCCk7k9BlwhUG78t-RkotW7mH3j-6xPB9SymbjUtI41jiC9tkZKsroSvZ64J-OKAYQ0qRFsdZpDD7Vs2x1cK--Xv4I_mnxgK8OwCAyazDNvqS5X-EfgEnsKw1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762062196</pqid></control><display><type>article</type><title>Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gorlin, Yelena ; Chung, Chia-Jung ; Benck, Jesse D ; Nordlund, Dennis ; Seitz, Linsey ; Weng, Tsu-Chien ; Sokaras, Dimosthenis ; Clemens, Bruce M ; Jaramillo, Thomas F</creator><creatorcontrib>Gorlin, Yelena ; Chung, Chia-Jung ; Benck, Jesse D ; Nordlund, Dennis ; Seitz, Linsey ; Weng, Tsu-Chien ; Sokaras, Dimosthenis ; Clemens, Bruce M ; Jaramillo, Thomas F ; Energy Frontier Research Centers (EFRC) ; Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</creatorcontrib><description>To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO x , a promising OER catalyst. We conclusively demonstrate that adding Au to MnO x significantly enhances OER activity relative to MnO x in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO x catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO x that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO x .</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja407581w</identifier><identifier>PMID: 24661269</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials) ; Catalysts ; Constraining ; Evolution ; Gold ; Gold - chemistry ; Manganese Compounds - chemistry ; Nanoparticles - chemistry ; Nanostructure ; Noble metals ; Oxidation-Reduction ; Oxides - chemistry ; Transition metal oxides ; Water - chemistry</subject><ispartof>J. Am. Chem. Soc, 2014-04, Vol.136 (13), p.4920-4926</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a465t-cc16bb7cbb2dc6b3483390a4e0e64e5d3d3e19eccdb70e45dac58d7c95938e943</citedby><cites>FETCH-LOGICAL-a465t-cc16bb7cbb2dc6b3483390a4e0e64e5d3d3e19eccdb70e45dac58d7c95938e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja407581w$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja407581w$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24661269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1161715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorlin, Yelena</creatorcontrib><creatorcontrib>Chung, Chia-Jung</creatorcontrib><creatorcontrib>Benck, Jesse D</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Seitz, Linsey</creatorcontrib><creatorcontrib>Weng, Tsu-Chien</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Clemens, Bruce M</creatorcontrib><creatorcontrib>Jaramillo, Thomas F</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</creatorcontrib><title>Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation</title><title>J. Am. Chem. Soc</title><addtitle>J. Am. Chem. Soc</addtitle><description>To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO x , a promising OER catalyst. We conclusively demonstrate that adding Au to MnO x significantly enhances OER activity relative to MnO x in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO x catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO x that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO x .</description><subject>Catalysis</subject><subject>catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><subject>Catalysts</subject><subject>Constraining</subject><subject>Evolution</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Manganese Compounds - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Noble metals</subject><subject>Oxidation-Reduction</subject><subject>Oxides - chemistry</subject><subject>Transition metal oxides</subject><subject>Water - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkUFvEzEQhS0EoqFw4A8gCwkJDgF71-vdvVSqqlAqBfXSiqM1O54kjjZ2sZ2WnPjrOKREIHGyLH9-b-Y9xl5L8VGKSn5agxJt08mHJ2wim0pMG1npp2wihKimbafrE_YipXW5qqqTz9lJpbQuSD9hP2-9pZgyeOv8kl_5TBEwu-ATHyg_EHn-FfwSPCXi1z-cJV5YfhlGy29WkPmcwPIc-MyvwCNZfl6-37u844sQ-WwkzDEgZBh32SH_BsXhtxDsXV6yZwsYE716PE_Z7efZzcWX6fz68urifD4FpZs8RZR6GFochsqiHmrV1XUvQJEgraixta1J9oRoh1aQaixg09kW-6avO-pVfcrODrp322FDFsnnCKO5i24DcWcCOPPvi3crswz3Ru1DU00ReHsQCCk7k9BlwhUG78t-RkotW7mH3j-6xPB9SymbjUtI41jiC9tkZKsroSvZ64J-OKAYQ0qRFsdZpDD7Vs2x1cK--Xv4I_mnxgK8OwCAyazDNvqS5X-EfgEnsKw1</recordid><startdate>20140402</startdate><enddate>20140402</enddate><creator>Gorlin, Yelena</creator><creator>Chung, Chia-Jung</creator><creator>Benck, Jesse D</creator><creator>Nordlund, Dennis</creator><creator>Seitz, Linsey</creator><creator>Weng, Tsu-Chien</creator><creator>Sokaras, Dimosthenis</creator><creator>Clemens, Bruce M</creator><creator>Jaramillo, Thomas F</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140402</creationdate><title>Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation</title><author>Gorlin, Yelena ; Chung, Chia-Jung ; Benck, Jesse D ; Nordlund, Dennis ; Seitz, Linsey ; Weng, Tsu-Chien ; Sokaras, Dimosthenis ; Clemens, Bruce M ; Jaramillo, Thomas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a465t-cc16bb7cbb2dc6b3483390a4e0e64e5d3d3e19eccdb70e45dac58d7c95938e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><topic>Catalysts</topic><topic>Constraining</topic><topic>Evolution</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Manganese Compounds - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Noble metals</topic><topic>Oxidation-Reduction</topic><topic>Oxides - chemistry</topic><topic>Transition metal oxides</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorlin, Yelena</creatorcontrib><creatorcontrib>Chung, Chia-Jung</creatorcontrib><creatorcontrib>Benck, Jesse D</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Seitz, Linsey</creatorcontrib><creatorcontrib>Weng, Tsu-Chien</creatorcontrib><creatorcontrib>Sokaras, Dimosthenis</creatorcontrib><creatorcontrib>Clemens, Bruce M</creatorcontrib><creatorcontrib>Jaramillo, Thomas F</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>J. Am. Chem. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorlin, Yelena</au><au>Chung, Chia-Jung</au><au>Benck, Jesse D</au><au>Nordlund, Dennis</au><au>Seitz, Linsey</au><au>Weng, Tsu-Chien</au><au>Sokaras, Dimosthenis</au><au>Clemens, Bruce M</au><au>Jaramillo, Thomas F</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center on Nanostructuring for Efficient Energy Conversion (CNEEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation</atitle><jtitle>J. Am. Chem. Soc</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-04-02</date><risdate>2014</risdate><volume>136</volume><issue>13</issue><spage>4920</spage><epage>4926</epage><pages>4920-4926</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO x , a promising OER catalyst. We conclusively demonstrate that adding Au to MnO x significantly enhances OER activity relative to MnO x in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO x catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO x that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO x .</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24661269</pmid><doi>10.1021/ja407581w</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | J. Am. Chem. Soc, 2014-04, Vol.136 (13), p.4920-4926 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4004245 |
source | MEDLINE; American Chemical Society Journals |
subjects | Catalysis catalysis (heterogeneous), solar (fuels), photosynthesis (natural and artificial), bio-inspired, electrodes - solar, defects, charge transport, materials and chemistry by design, synthesis (novel materials) Catalysts Constraining Evolution Gold Gold - chemistry Manganese Compounds - chemistry Nanoparticles - chemistry Nanostructure Noble metals Oxidation-Reduction Oxides - chemistry Transition metal oxides Water - chemistry |
title | Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T08%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Interactions%20between%20Manganese%20Oxide%20and%20Gold%20That%20Lead%20to%20Enhanced%20Activity%20for%20Electrocatalytic%20Water%20Oxidation&rft.jtitle=J.%20Am.%20Chem.%20Soc&rft.au=Gorlin,%20Yelena&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-04-02&rft.volume=136&rft.issue=13&rft.spage=4920&rft.epage=4926&rft.pages=4920-4926&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja407581w&rft_dat=%3Cproquest_pubme%3E1762062196%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762062196&rft_id=info:pmid/24661269&rfr_iscdi=true |