Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2014-05, Vol.143 (5), p.645-656
Hauptverfasser: Pless, Stephan A, Elstone, Fisal D, Niciforovic, Ana P, Galpin, Jason D, Yang, Runying, Kurata, Harley T, Ahern, Christopher A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 656
container_issue 5
container_start_page 645
container_title The Journal of general physiology
container_volume 143
creator Pless, Stephan A
Elstone, Fisal D
Niciforovic, Ana P
Galpin, Jason D
Yang, Runying
Kurata, Harley T
Ahern, Christopher A
description Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.
doi_str_mv 10.1085/jgp.201311036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3300391451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f2ccb64cd7bf6be20bb503eeab22a8fb4e88138a565acc81caaa64e434fda38b3</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouj6OXiXguZpnGy-CiC8QvOg5TNJ0N0ubrEkr-N-bZddF5xJm8ptvJvkQOqfkihIlr5fz1RUjlFNKeL2HZlQKUjWNUPtoRghjFWU38ggd57wkJSQjh-iIiaZRgtMZinf5exjcmLzF3RTs6GOAHtsYSslM6zTj2GGwvi0IhBZDigOMJcm-ddguwBfEB5xj66dhXQjB9fgr9iPMXZVdyDHhtjQV8BQddNBnd7Y9T9DH48P7_XP1-vb0cn_3WllB5Vh1zFpTC9s2pquNY8QYSbhzYBgD1RnhlKJcgawlWKuoBYBaOMFF1wJXhp-g243uajKDa60r74Fer5IfIH3rCF7_vwl-oefxSwtCOFV1EbjcCqT4Obk86mWcUvmbrKlkvKGsobxQ1YayKeacXLebQIle-6OLP3rnT-Ev_q61o38N4T_W6JAb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1523712713</pqid></control><display><type>article</type><title>Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Pless, Stephan A ; Elstone, Fisal D ; Niciforovic, Ana P ; Galpin, Jason D ; Yang, Runying ; Kurata, Harley T ; Ahern, Christopher A</creator><creatorcontrib>Pless, Stephan A ; Elstone, Fisal D ; Niciforovic, Ana P ; Galpin, Jason D ; Yang, Runying ; Kurata, Harley T ; Ahern, Christopher A</creatorcontrib><description>Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201311036</identifier><identifier>PMID: 24778431</identifier><identifier>CODEN: JGPLAD</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Amino Acids, Acidic - chemistry ; Amino Acids, Acidic - genetics ; Amino Acids, Aromatic - chemistry ; Amino Acids, Aromatic - genetics ; Animals ; Electrostatics ; Genotype &amp; phenotype ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Muscle Proteins - chemistry ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Potassium ; Protein Structure, Tertiary ; Rats ; Sodium ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Sodium Channels - metabolism ; Xenopus</subject><ispartof>The Journal of general physiology, 2014-05, Vol.143 (5), p.645-656</ispartof><rights>Copyright Rockefeller University Press May 2014</rights><rights>2014 Pless et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f2ccb64cd7bf6be20bb503eeab22a8fb4e88138a565acc81caaa64e434fda38b3</citedby><cites>FETCH-LOGICAL-c415t-f2ccb64cd7bf6be20bb503eeab22a8fb4e88138a565acc81caaa64e434fda38b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24778431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pless, Stephan A</creatorcontrib><creatorcontrib>Elstone, Fisal D</creatorcontrib><creatorcontrib>Niciforovic, Ana P</creatorcontrib><creatorcontrib>Galpin, Jason D</creatorcontrib><creatorcontrib>Yang, Runying</creatorcontrib><creatorcontrib>Kurata, Harley T</creatorcontrib><creatorcontrib>Ahern, Christopher A</creatorcontrib><title>Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Amino Acids, Acidic - chemistry</subject><subject>Amino Acids, Acidic - genetics</subject><subject>Amino Acids, Aromatic - chemistry</subject><subject>Amino Acids, Aromatic - genetics</subject><subject>Animals</subject><subject>Electrostatics</subject><subject>Genotype &amp; phenotype</subject><subject>Ion Channel Gating</subject><subject>Membrane Potentials</subject><subject>Molecular Sequence Data</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Potassium</subject><subject>Protein Structure, Tertiary</subject><subject>Rats</subject><subject>Sodium</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - metabolism</subject><subject>Xenopus</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLxDAQxoMouj6OXiXguZpnGy-CiC8QvOg5TNJ0N0ubrEkr-N-bZddF5xJm8ptvJvkQOqfkihIlr5fz1RUjlFNKeL2HZlQKUjWNUPtoRghjFWU38ggd57wkJSQjh-iIiaZRgtMZinf5exjcmLzF3RTs6GOAHtsYSslM6zTj2GGwvi0IhBZDigOMJcm-ddguwBfEB5xj66dhXQjB9fgr9iPMXZVdyDHhtjQV8BQddNBnd7Y9T9DH48P7_XP1-vb0cn_3WllB5Vh1zFpTC9s2pquNY8QYSbhzYBgD1RnhlKJcgawlWKuoBYBaOMFF1wJXhp-g243uajKDa60r74Fer5IfIH3rCF7_vwl-oefxSwtCOFV1EbjcCqT4Obk86mWcUvmbrKlkvKGsobxQ1YayKeacXLebQIle-6OLP3rnT-Ev_q61o38N4T_W6JAb</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Pless, Stephan A</creator><creator>Elstone, Fisal D</creator><creator>Niciforovic, Ana P</creator><creator>Galpin, Jason D</creator><creator>Yang, Runying</creator><creator>Kurata, Harley T</creator><creator>Ahern, Christopher A</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201405</creationdate><title>Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains</title><author>Pless, Stephan A ; Elstone, Fisal D ; Niciforovic, Ana P ; Galpin, Jason D ; Yang, Runying ; Kurata, Harley T ; Ahern, Christopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f2ccb64cd7bf6be20bb503eeab22a8fb4e88138a565acc81caaa64e434fda38b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Amino Acids, Acidic - chemistry</topic><topic>Amino Acids, Acidic - genetics</topic><topic>Amino Acids, Aromatic - chemistry</topic><topic>Amino Acids, Aromatic - genetics</topic><topic>Animals</topic><topic>Electrostatics</topic><topic>Genotype &amp; phenotype</topic><topic>Ion Channel Gating</topic><topic>Membrane Potentials</topic><topic>Molecular Sequence Data</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Potassium</topic><topic>Protein Structure, Tertiary</topic><topic>Rats</topic><topic>Sodium</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - metabolism</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pless, Stephan A</creatorcontrib><creatorcontrib>Elstone, Fisal D</creatorcontrib><creatorcontrib>Niciforovic, Ana P</creatorcontrib><creatorcontrib>Galpin, Jason D</creatorcontrib><creatorcontrib>Yang, Runying</creatorcontrib><creatorcontrib>Kurata, Harley T</creatorcontrib><creatorcontrib>Ahern, Christopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pless, Stephan A</au><au>Elstone, Fisal D</au><au>Niciforovic, Ana P</au><au>Galpin, Jason D</au><au>Yang, Runying</au><au>Kurata, Harley T</au><au>Ahern, Christopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2014-05</date><risdate>2014</risdate><volume>143</volume><issue>5</issue><spage>645</spage><epage>656</epage><pages>645-656</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><coden>JGPLAD</coden><abstract>Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>24778431</pmid><doi>10.1085/jgp.201311036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2014-05, Vol.143 (5), p.645-656
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003186
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Amino Acid Substitution
Amino acids
Amino Acids, Acidic - chemistry
Amino Acids, Acidic - genetics
Amino Acids, Aromatic - chemistry
Amino Acids, Aromatic - genetics
Animals
Electrostatics
Genotype & phenotype
Ion Channel Gating
Membrane Potentials
Molecular Sequence Data
Muscle Proteins - chemistry
Muscle Proteins - genetics
Muscle Proteins - metabolism
Potassium
Protein Structure, Tertiary
Rats
Sodium
Sodium Channels - chemistry
Sodium Channels - genetics
Sodium Channels - metabolism
Xenopus
title Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20functional%20contributions%20of%20acidic%20and%20aromatic%20side%20chains%20in%20sodium%20channel%20voltage-sensor%20domains&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Pless,%20Stephan%20A&rft.date=2014-05&rft.volume=143&rft.issue=5&rft.spage=645&rft.epage=656&rft.pages=645-656&rft.issn=0022-1295&rft.eissn=1540-7748&rft.coden=JGPLAD&rft_id=info:doi/10.1085/jgp.201311036&rft_dat=%3Cproquest_pubme%3E3300391451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1523712713&rft_id=info:pmid/24778431&rfr_iscdi=true