Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1
Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hy...
Gespeichert in:
Veröffentlicht in: | Cellular & molecular immunology 2013-03, Vol.10 (2), p.176-182 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 2 |
container_start_page | 176 |
container_title | Cellular & molecular immunology |
container_volume | 10 |
creator | Sun, Jintang Feng, Alei Chen, Songyu Zhang, Yun Xie, Qi Yang, Meixiang Shao, Qianqian Liu, Jia Yang, Qifeng Kong, Beihua Qu, Xun |
description | Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape. |
doi_str_mv | 10.1038/cmi.2012.67 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44986377</cqvip_id><sourcerecordid>2760382508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</originalsourceid><addsrcrecordid>eNptkU1v1DAQhi0EokvhxB0ZcUGCLP6KnVwqoRUtSEXlUM6Wk4y3rhJ7azsr9m_xQ_hNuNpl-RCnGWkevzPWg9BzSpaU8OZdP7klI5QtpXqAFowIVhHG5EO0oFKxSsmGnqAnKd0SUjdCicfohHFBZSubBXJXKUPYBJ-dx2kzuh7w1kRnfE4Yvm0ipAQD7na4i2BSxnmeQkw4wnoeTQY8BR_6XWlMn93WZBc83jqDP6--VBQbP-Dri_Pqx3f6FD2yZkzw7FBP0dfzD9erj9Xl1cWn1fvLqhc1V5VthSKC29YIZutecj50wGQNg7Bga6a6trZqqKUklreU9kNLATrWEWNpQyg_RWf73M3cTTD04HM0o95EN5m408E4_ffEuxu9DlstCOGkZiXg9SEghrsZUtaTSz2Mo_EQ5qQpp0JR3lBR0Ff_oLdhjr58TzMlixxWk6ZQb_ZUH0NKEezxGEr0vUJdFOp7hVqqQr_48_4j-8tZAd7ugVRGfg3x99L_5708bL8Jfn1XXhwjhWgbyZXiPwH5QbKl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760382508</pqid></control><display><type>article</type><title>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Sun, Jintang ; Feng, Alei ; Chen, Songyu ; Zhang, Yun ; Xie, Qi ; Yang, Meixiang ; Shao, Qianqian ; Liu, Jia ; Yang, Qifeng ; Kong, Beihua ; Qu, Xun</creator><creatorcontrib>Sun, Jintang ; Feng, Alei ; Chen, Songyu ; Zhang, Yun ; Xie, Qi ; Yang, Meixiang ; Shao, Qianqian ; Liu, Jia ; Yang, Qifeng ; Kong, Beihua ; Qu, Xun</creatorcontrib><description>Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.</description><identifier>ISSN: 1672-7681</identifier><identifier>EISSN: 2042-0226</identifier><identifier>DOI: 10.1038/cmi.2012.67</identifier><identifier>PMID: 23416968</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alternative splicing ; Animals ; Antibodies ; Biomedical and Life Sciences ; Biomedicine ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - immunology ; Breast Neoplasms - pathology ; CD163 antigen ; Cell activation ; Cell differentiation ; Cell Line, Tumor ; Chemokine CCL2 - physiology ; Expression vectors ; Gene Expression Regulation, Neoplastic - immunology ; Genetic Variation - immunology ; Histocompatibility antigen HLA ; Humans ; IL-10 ; Immune Evasion - genetics ; Immunology ; Interleukin 10 ; MCP-1 ; Medical Microbiology ; Mice ; Mice, Nude ; Microbiology ; Monocyte chemoattractant protein 1 ; Monocytes ; Monocytes - immunology ; Monocytes - metabolism ; Monocytes - pathology ; Osteopontin ; Osteopontin - biosynthesis ; Osteopontin - genetics ; research-article ; RNA Splicing - genetics ; RNA Splicing - immunology ; TNF-α ; Transforming Growth Factor beta1 - physiology ; Transforming growth factor-b1 ; Tumor cells ; Tumor necrosis factor-α ; Tumors ; Vaccine ; 乳腺肿瘤 ; 单核细胞 ; 变体 ; 细胞活化 ; 骨桥蛋白</subject><ispartof>Cellular & molecular immunology, 2013-03, Vol.10 (2), p.176-182</ispartof><rights>Chinese Society of Immunology and The University of Science and Technology 2013</rights><rights>Chinese Society of Immunology and The University of Science and Technology 2013.</rights><rights>Copyright © 2013 Chinese Society of Immunology and The University of Science and Technology 2013 Chinese Society of Immunology and The University of Science and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</citedby><cites>FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87787X/87787X.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003052/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003052/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23416968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jintang</creatorcontrib><creatorcontrib>Feng, Alei</creatorcontrib><creatorcontrib>Chen, Songyu</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Xie, Qi</creatorcontrib><creatorcontrib>Yang, Meixiang</creatorcontrib><creatorcontrib>Shao, Qianqian</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Yang, Qifeng</creatorcontrib><creatorcontrib>Kong, Beihua</creatorcontrib><creatorcontrib>Qu, Xun</creatorcontrib><title>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</title><title>Cellular & molecular immunology</title><addtitle>Cell Mol Immunol</addtitle><addtitle>Cellular & Molecular Immunology</addtitle><description>Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.</description><subject>Alternative splicing</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - pathology</subject><subject>CD163 antigen</subject><subject>Cell activation</subject><subject>Cell differentiation</subject><subject>Cell Line, Tumor</subject><subject>Chemokine CCL2 - physiology</subject><subject>Expression vectors</subject><subject>Gene Expression Regulation, Neoplastic - immunology</subject><subject>Genetic Variation - immunology</subject><subject>Histocompatibility antigen HLA</subject><subject>Humans</subject><subject>IL-10</subject><subject>Immune Evasion - genetics</subject><subject>Immunology</subject><subject>Interleukin 10</subject><subject>MCP-1</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microbiology</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - pathology</subject><subject>Osteopontin</subject><subject>Osteopontin - biosynthesis</subject><subject>Osteopontin - genetics</subject><subject>research-article</subject><subject>RNA Splicing - genetics</subject><subject>RNA Splicing - immunology</subject><subject>TNF-α</subject><subject>Transforming Growth Factor beta1 - physiology</subject><subject>Transforming growth factor-b1</subject><subject>Tumor cells</subject><subject>Tumor necrosis factor-α</subject><subject>Tumors</subject><subject>Vaccine</subject><subject>乳腺肿瘤</subject><subject>单核细胞</subject><subject>变体</subject><subject>细胞活化</subject><subject>骨桥蛋白</subject><issn>1672-7681</issn><issn>2042-0226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1v1DAQhi0EokvhxB0ZcUGCLP6KnVwqoRUtSEXlUM6Wk4y3rhJ7azsr9m_xQ_hNuNpl-RCnGWkevzPWg9BzSpaU8OZdP7klI5QtpXqAFowIVhHG5EO0oFKxSsmGnqAnKd0SUjdCicfohHFBZSubBXJXKUPYBJ-dx2kzuh7w1kRnfE4Yvm0ipAQD7na4i2BSxnmeQkw4wnoeTQY8BR_6XWlMn93WZBc83jqDP6--VBQbP-Dri_Pqx3f6FD2yZkzw7FBP0dfzD9erj9Xl1cWn1fvLqhc1V5VthSKC29YIZutecj50wGQNg7Bga6a6trZqqKUklreU9kNLATrWEWNpQyg_RWf73M3cTTD04HM0o95EN5m408E4_ffEuxu9DlstCOGkZiXg9SEghrsZUtaTSz2Mo_EQ5qQpp0JR3lBR0Ff_oLdhjr58TzMlixxWk6ZQb_ZUH0NKEezxGEr0vUJdFOp7hVqqQr_48_4j-8tZAd7ugVRGfg3x99L_5708bL8Jfn1XXhwjhWgbyZXiPwH5QbKl</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Sun, Jintang</creator><creator>Feng, Alei</creator><creator>Chen, Songyu</creator><creator>Zhang, Yun</creator><creator>Xie, Qi</creator><creator>Yang, Meixiang</creator><creator>Shao, Qianqian</creator><creator>Liu, Jia</creator><creator>Yang, Qifeng</creator><creator>Kong, Beihua</creator><creator>Qu, Xun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201303</creationdate><title>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</title><author>Sun, Jintang ; Feng, Alei ; Chen, Songyu ; Zhang, Yun ; Xie, Qi ; Yang, Meixiang ; Shao, Qianqian ; Liu, Jia ; Yang, Qifeng ; Kong, Beihua ; Qu, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative splicing</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - pathology</topic><topic>CD163 antigen</topic><topic>Cell activation</topic><topic>Cell differentiation</topic><topic>Cell Line, Tumor</topic><topic>Chemokine CCL2 - physiology</topic><topic>Expression vectors</topic><topic>Gene Expression Regulation, Neoplastic - immunology</topic><topic>Genetic Variation - immunology</topic><topic>Histocompatibility antigen HLA</topic><topic>Humans</topic><topic>IL-10</topic><topic>Immune Evasion - genetics</topic><topic>Immunology</topic><topic>Interleukin 10</topic><topic>MCP-1</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microbiology</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - pathology</topic><topic>Osteopontin</topic><topic>Osteopontin - biosynthesis</topic><topic>Osteopontin - genetics</topic><topic>research-article</topic><topic>RNA Splicing - genetics</topic><topic>RNA Splicing - immunology</topic><topic>TNF-α</topic><topic>Transforming Growth Factor beta1 - physiology</topic><topic>Transforming growth factor-b1</topic><topic>Tumor cells</topic><topic>Tumor necrosis factor-α</topic><topic>Tumors</topic><topic>Vaccine</topic><topic>乳腺肿瘤</topic><topic>单核细胞</topic><topic>变体</topic><topic>细胞活化</topic><topic>骨桥蛋白</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jintang</creatorcontrib><creatorcontrib>Feng, Alei</creatorcontrib><creatorcontrib>Chen, Songyu</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Xie, Qi</creatorcontrib><creatorcontrib>Yang, Meixiang</creatorcontrib><creatorcontrib>Shao, Qianqian</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Yang, Qifeng</creatorcontrib><creatorcontrib>Kong, Beihua</creatorcontrib><creatorcontrib>Qu, Xun</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular & molecular immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jintang</au><au>Feng, Alei</au><au>Chen, Songyu</au><au>Zhang, Yun</au><au>Xie, Qi</au><au>Yang, Meixiang</au><au>Shao, Qianqian</au><au>Liu, Jia</au><au>Yang, Qifeng</au><au>Kong, Beihua</au><au>Qu, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</atitle><jtitle>Cellular & molecular immunology</jtitle><stitle>Cell Mol Immunol</stitle><addtitle>Cellular & Molecular Immunology</addtitle><date>2013-03</date><risdate>2013</risdate><volume>10</volume><issue>2</issue><spage>176</spage><epage>182</epage><pages>176-182</pages><issn>1672-7681</issn><eissn>2042-0226</eissn><abstract>Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23416968</pmid><doi>10.1038/cmi.2012.67</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-7681 |
ispartof | Cellular & molecular immunology, 2013-03, Vol.10 (2), p.176-182 |
issn | 1672-7681 2042-0226 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003052 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Alternative splicing Animals Antibodies Biomedical and Life Sciences Biomedicine Breast cancer Breast Neoplasms - genetics Breast Neoplasms - immunology Breast Neoplasms - pathology CD163 antigen Cell activation Cell differentiation Cell Line, Tumor Chemokine CCL2 - physiology Expression vectors Gene Expression Regulation, Neoplastic - immunology Genetic Variation - immunology Histocompatibility antigen HLA Humans IL-10 Immune Evasion - genetics Immunology Interleukin 10 MCP-1 Medical Microbiology Mice Mice, Nude Microbiology Monocyte chemoattractant protein 1 Monocytes Monocytes - immunology Monocytes - metabolism Monocytes - pathology Osteopontin Osteopontin - biosynthesis Osteopontin - genetics research-article RNA Splicing - genetics RNA Splicing - immunology TNF-α Transforming Growth Factor beta1 - physiology Transforming growth factor-b1 Tumor cells Tumor necrosis factor-α Tumors Vaccine 乳腺肿瘤 单核细胞 变体 细胞活化 骨桥蛋白 |
title | Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteopontin%20splice%20variants%20expressed%20by%20breast%20tumors%20regulate%20monocyte%20activation%20via%20MCP-1%20and%20TGF-%CE%B21&rft.jtitle=Cellular%20&%20molecular%20immunology&rft.au=Sun,%20Jintang&rft.date=2013-03&rft.volume=10&rft.issue=2&rft.spage=176&rft.epage=182&rft.pages=176-182&rft.issn=1672-7681&rft.eissn=2042-0226&rft_id=info:doi/10.1038/cmi.2012.67&rft_dat=%3Cproquest_pubme%3E2760382508%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760382508&rft_id=info:pmid/23416968&rft_cqvip_id=44986377&rfr_iscdi=true |