Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1

Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular & molecular immunology 2013-03, Vol.10 (2), p.176-182
Hauptverfasser: Sun, Jintang, Feng, Alei, Chen, Songyu, Zhang, Yun, Xie, Qi, Yang, Meixiang, Shao, Qianqian, Liu, Jia, Yang, Qifeng, Kong, Beihua, Qu, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 2
container_start_page 176
container_title Cellular & molecular immunology
container_volume 10
creator Sun, Jintang
Feng, Alei
Chen, Songyu
Zhang, Yun
Xie, Qi
Yang, Meixiang
Shao, Qianqian
Liu, Jia
Yang, Qifeng
Kong, Beihua
Qu, Xun
description Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.
doi_str_mv 10.1038/cmi.2012.67
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44986377</cqvip_id><sourcerecordid>2760382508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</originalsourceid><addsrcrecordid>eNptkU1v1DAQhi0EokvhxB0ZcUGCLP6KnVwqoRUtSEXlUM6Wk4y3rhJ7azsr9m_xQ_hNuNpl-RCnGWkevzPWg9BzSpaU8OZdP7klI5QtpXqAFowIVhHG5EO0oFKxSsmGnqAnKd0SUjdCicfohHFBZSubBXJXKUPYBJ-dx2kzuh7w1kRnfE4Yvm0ipAQD7na4i2BSxnmeQkw4wnoeTQY8BR_6XWlMn93WZBc83jqDP6--VBQbP-Dri_Pqx3f6FD2yZkzw7FBP0dfzD9erj9Xl1cWn1fvLqhc1V5VthSKC29YIZutecj50wGQNg7Bga6a6trZqqKUklreU9kNLATrWEWNpQyg_RWf73M3cTTD04HM0o95EN5m408E4_ffEuxu9DlstCOGkZiXg9SEghrsZUtaTSz2Mo_EQ5qQpp0JR3lBR0Ff_oLdhjr58TzMlixxWk6ZQb_ZUH0NKEezxGEr0vUJdFOp7hVqqQr_48_4j-8tZAd7ugVRGfg3x99L_5708bL8Jfn1XXhwjhWgbyZXiPwH5QbKl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760382508</pqid></control><display><type>article</type><title>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Sun, Jintang ; Feng, Alei ; Chen, Songyu ; Zhang, Yun ; Xie, Qi ; Yang, Meixiang ; Shao, Qianqian ; Liu, Jia ; Yang, Qifeng ; Kong, Beihua ; Qu, Xun</creator><creatorcontrib>Sun, Jintang ; Feng, Alei ; Chen, Songyu ; Zhang, Yun ; Xie, Qi ; Yang, Meixiang ; Shao, Qianqian ; Liu, Jia ; Yang, Qifeng ; Kong, Beihua ; Qu, Xun</creatorcontrib><description>Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.</description><identifier>ISSN: 1672-7681</identifier><identifier>EISSN: 2042-0226</identifier><identifier>DOI: 10.1038/cmi.2012.67</identifier><identifier>PMID: 23416968</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alternative splicing ; Animals ; Antibodies ; Biomedical and Life Sciences ; Biomedicine ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - immunology ; Breast Neoplasms - pathology ; CD163 antigen ; Cell activation ; Cell differentiation ; Cell Line, Tumor ; Chemokine CCL2 - physiology ; Expression vectors ; Gene Expression Regulation, Neoplastic - immunology ; Genetic Variation - immunology ; Histocompatibility antigen HLA ; Humans ; IL-10 ; Immune Evasion - genetics ; Immunology ; Interleukin 10 ; MCP-1 ; Medical Microbiology ; Mice ; Mice, Nude ; Microbiology ; Monocyte chemoattractant protein 1 ; Monocytes ; Monocytes - immunology ; Monocytes - metabolism ; Monocytes - pathology ; Osteopontin ; Osteopontin - biosynthesis ; Osteopontin - genetics ; research-article ; RNA Splicing - genetics ; RNA Splicing - immunology ; TNF-α ; Transforming Growth Factor beta1 - physiology ; Transforming growth factor-b1 ; Tumor cells ; Tumor necrosis factor-α ; Tumors ; Vaccine ; 乳腺肿瘤 ; 单核细胞 ; 变体 ; 细胞活化 ; 骨桥蛋白</subject><ispartof>Cellular &amp; molecular immunology, 2013-03, Vol.10 (2), p.176-182</ispartof><rights>Chinese Society of Immunology and The University of Science and Technology 2013</rights><rights>Chinese Society of Immunology and The University of Science and Technology 2013.</rights><rights>Copyright © 2013 Chinese Society of Immunology and The University of Science and Technology 2013 Chinese Society of Immunology and The University of Science and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</citedby><cites>FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87787X/87787X.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003052/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003052/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23416968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jintang</creatorcontrib><creatorcontrib>Feng, Alei</creatorcontrib><creatorcontrib>Chen, Songyu</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Xie, Qi</creatorcontrib><creatorcontrib>Yang, Meixiang</creatorcontrib><creatorcontrib>Shao, Qianqian</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Yang, Qifeng</creatorcontrib><creatorcontrib>Kong, Beihua</creatorcontrib><creatorcontrib>Qu, Xun</creatorcontrib><title>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</title><title>Cellular &amp; molecular immunology</title><addtitle>Cell Mol Immunol</addtitle><addtitle>Cellular & Molecular Immunology</addtitle><description>Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.</description><subject>Alternative splicing</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - immunology</subject><subject>Breast Neoplasms - pathology</subject><subject>CD163 antigen</subject><subject>Cell activation</subject><subject>Cell differentiation</subject><subject>Cell Line, Tumor</subject><subject>Chemokine CCL2 - physiology</subject><subject>Expression vectors</subject><subject>Gene Expression Regulation, Neoplastic - immunology</subject><subject>Genetic Variation - immunology</subject><subject>Histocompatibility antigen HLA</subject><subject>Humans</subject><subject>IL-10</subject><subject>Immune Evasion - genetics</subject><subject>Immunology</subject><subject>Interleukin 10</subject><subject>MCP-1</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microbiology</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - pathology</subject><subject>Osteopontin</subject><subject>Osteopontin - biosynthesis</subject><subject>Osteopontin - genetics</subject><subject>research-article</subject><subject>RNA Splicing - genetics</subject><subject>RNA Splicing - immunology</subject><subject>TNF-α</subject><subject>Transforming Growth Factor beta1 - physiology</subject><subject>Transforming growth factor-b1</subject><subject>Tumor cells</subject><subject>Tumor necrosis factor-α</subject><subject>Tumors</subject><subject>Vaccine</subject><subject>乳腺肿瘤</subject><subject>单核细胞</subject><subject>变体</subject><subject>细胞活化</subject><subject>骨桥蛋白</subject><issn>1672-7681</issn><issn>2042-0226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1v1DAQhi0EokvhxB0ZcUGCLP6KnVwqoRUtSEXlUM6Wk4y3rhJ7azsr9m_xQ_hNuNpl-RCnGWkevzPWg9BzSpaU8OZdP7klI5QtpXqAFowIVhHG5EO0oFKxSsmGnqAnKd0SUjdCicfohHFBZSubBXJXKUPYBJ-dx2kzuh7w1kRnfE4Yvm0ipAQD7na4i2BSxnmeQkw4wnoeTQY8BR_6XWlMn93WZBc83jqDP6--VBQbP-Dri_Pqx3f6FD2yZkzw7FBP0dfzD9erj9Xl1cWn1fvLqhc1V5VthSKC29YIZutecj50wGQNg7Bga6a6trZqqKUklreU9kNLATrWEWNpQyg_RWf73M3cTTD04HM0o95EN5m408E4_ffEuxu9DlstCOGkZiXg9SEghrsZUtaTSz2Mo_EQ5qQpp0JR3lBR0Ff_oLdhjr58TzMlixxWk6ZQb_ZUH0NKEezxGEr0vUJdFOp7hVqqQr_48_4j-8tZAd7ugVRGfg3x99L_5708bL8Jfn1XXhwjhWgbyZXiPwH5QbKl</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Sun, Jintang</creator><creator>Feng, Alei</creator><creator>Chen, Songyu</creator><creator>Zhang, Yun</creator><creator>Xie, Qi</creator><creator>Yang, Meixiang</creator><creator>Shao, Qianqian</creator><creator>Liu, Jia</creator><creator>Yang, Qifeng</creator><creator>Kong, Beihua</creator><creator>Qu, Xun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201303</creationdate><title>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</title><author>Sun, Jintang ; Feng, Alei ; Chen, Songyu ; Zhang, Yun ; Xie, Qi ; Yang, Meixiang ; Shao, Qianqian ; Liu, Jia ; Yang, Qifeng ; Kong, Beihua ; Qu, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4537-f947043f9a42f5c633dbe265ed4fef527b95f7d5660f3911cd91eeb2b0af18013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative splicing</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - immunology</topic><topic>Breast Neoplasms - pathology</topic><topic>CD163 antigen</topic><topic>Cell activation</topic><topic>Cell differentiation</topic><topic>Cell Line, Tumor</topic><topic>Chemokine CCL2 - physiology</topic><topic>Expression vectors</topic><topic>Gene Expression Regulation, Neoplastic - immunology</topic><topic>Genetic Variation - immunology</topic><topic>Histocompatibility antigen HLA</topic><topic>Humans</topic><topic>IL-10</topic><topic>Immune Evasion - genetics</topic><topic>Immunology</topic><topic>Interleukin 10</topic><topic>MCP-1</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microbiology</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - pathology</topic><topic>Osteopontin</topic><topic>Osteopontin - biosynthesis</topic><topic>Osteopontin - genetics</topic><topic>research-article</topic><topic>RNA Splicing - genetics</topic><topic>RNA Splicing - immunology</topic><topic>TNF-α</topic><topic>Transforming Growth Factor beta1 - physiology</topic><topic>Transforming growth factor-b1</topic><topic>Tumor cells</topic><topic>Tumor necrosis factor-α</topic><topic>Tumors</topic><topic>Vaccine</topic><topic>乳腺肿瘤</topic><topic>单核细胞</topic><topic>变体</topic><topic>细胞活化</topic><topic>骨桥蛋白</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jintang</creatorcontrib><creatorcontrib>Feng, Alei</creatorcontrib><creatorcontrib>Chen, Songyu</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Xie, Qi</creatorcontrib><creatorcontrib>Yang, Meixiang</creatorcontrib><creatorcontrib>Shao, Qianqian</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Yang, Qifeng</creatorcontrib><creatorcontrib>Kong, Beihua</creatorcontrib><creatorcontrib>Qu, Xun</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular &amp; molecular immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jintang</au><au>Feng, Alei</au><au>Chen, Songyu</au><au>Zhang, Yun</au><au>Xie, Qi</au><au>Yang, Meixiang</au><au>Shao, Qianqian</au><au>Liu, Jia</au><au>Yang, Qifeng</au><au>Kong, Beihua</au><au>Qu, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1</atitle><jtitle>Cellular &amp; molecular immunology</jtitle><stitle>Cell Mol Immunol</stitle><addtitle>Cellular & Molecular Immunology</addtitle><date>2013-03</date><risdate>2013</risdate><volume>10</volume><issue>2</issue><spage>176</spage><epage>182</epage><pages>176-182</pages><issn>1672-7681</issn><eissn>2042-0226</eissn><abstract>Osteopontin (OPN), a multifunctional glycoprotein, has three transcripts that have distinct roles in tumors in vitro. Whether OPN transcripts have different functions in tumor processes in vivo is unclear. It has been reported that immune cell-derived OPN can promote tumor formation. We propose a hypothesis that tumor-derived OPN may facilitate tumor immune escape by affecting immune cell differentiation and function. In this study, we constructed lentiviral expression vectors of OPN transcripts and transfected them into the MCF-7 cell line. MCF-7 cells transfected with OPN transcripts were injected into the armpit of nude mice, and tumor growth was monitored. The results showed that all OPN transcripts promoted local tumor formation, but that there was no significant difference among transcripts. We also investigated the effect of the OPN expressed by tumor cells on monocyte differentiation by coculturing monocytes with tumor supernatant. We found OPN-c upregulated CD163 levels compared with OPN-a and OPN-b; however, none of the transcripts affected HLA-DR and CD206 levels. All OPN transcripts significantly inhibited TNF-α and enhanced IL-10 production by monocytes. Furthermore, we found that the overexpression of OPN transcripts significantly upregulated TGF-β1 and MCP-1 production by tumor cells. Using neutralizing antibody and recombinant cytokines, we found that OPN overexpressed by tumor cells regulates the production of TNF-α and IL-10 by monocytes partly via MCP-1 and TGF-β1, respectively. Collectively, our results show that OPN transcripts have no distinct role in breast cancer formation in vivo. We also demonstrate that OPN regulates the alternative activation of monocytes via TGF-β1 and MCP-1, which may represent an additional mechanism for tumor immune escape.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23416968</pmid><doi>10.1038/cmi.2012.67</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-7681
ispartof Cellular & molecular immunology, 2013-03, Vol.10 (2), p.176-182
issn 1672-7681
2042-0226
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003052
source MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Alternative splicing
Animals
Antibodies
Biomedical and Life Sciences
Biomedicine
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - immunology
Breast Neoplasms - pathology
CD163 antigen
Cell activation
Cell differentiation
Cell Line, Tumor
Chemokine CCL2 - physiology
Expression vectors
Gene Expression Regulation, Neoplastic - immunology
Genetic Variation - immunology
Histocompatibility antigen HLA
Humans
IL-10
Immune Evasion - genetics
Immunology
Interleukin 10
MCP-1
Medical Microbiology
Mice
Mice, Nude
Microbiology
Monocyte chemoattractant protein 1
Monocytes
Monocytes - immunology
Monocytes - metabolism
Monocytes - pathology
Osteopontin
Osteopontin - biosynthesis
Osteopontin - genetics
research-article
RNA Splicing - genetics
RNA Splicing - immunology
TNF-α
Transforming Growth Factor beta1 - physiology
Transforming growth factor-b1
Tumor cells
Tumor necrosis factor-α
Tumors
Vaccine
乳腺肿瘤
单核细胞
变体
细胞活化
骨桥蛋白
title Osteopontin splice variants expressed by breast tumors regulate monocyte activation via MCP-1 and TGF-β1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteopontin%20splice%20variants%20expressed%20by%20breast%20tumors%20regulate%20monocyte%20activation%20via%20MCP-1%20and%20TGF-%CE%B21&rft.jtitle=Cellular%20&%20molecular%20immunology&rft.au=Sun,%20Jintang&rft.date=2013-03&rft.volume=10&rft.issue=2&rft.spage=176&rft.epage=182&rft.pages=176-182&rft.issn=1672-7681&rft.eissn=2042-0226&rft_id=info:doi/10.1038/cmi.2012.67&rft_dat=%3Cproquest_pubme%3E2760382508%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760382508&rft_id=info:pmid/23416968&rft_cqvip_id=44986377&rfr_iscdi=true