GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms

Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2009-03, Vol.30 (3), p.346-354
Hauptverfasser: Xie, Hua, Qin, Yu-xin, Zhou, Yun-long, Tong, Lin-jiang, Lin, Li-ping, Geng, Mei-yu, Duan, Wen-hu, Ding, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 3
container_start_page 346
container_title Acta pharmacologica Sinica
container_volume 30
creator Xie, Hua
Qin, Yu-xin
Zhou, Yun-long
Tong, Lin-jiang
Lin, Li-ping
Geng, Mei-yu
Duan, Wen-hu
Ding, Jian
description Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study was to examine the antitumor activity of GA3 and the mechanism underlying it. Methods: The growth inhibition of cancer cell lines induced by GA3 was assessed using the SRB assay. DAPI staining, flow cytometry, a DNA fragment assay, and Western blot analysis were used to study the apoptotic mechanisms of GA3. Results: GA3 displayed wide cytotoxicity in diversified human cancer cell lines with a mean ICs0 value of 2.15 μmol/L. GA3 was also effective against multidrug resistant cells, with an average resistance factor (RF) that was much lower than that of the reference drug, doxorubicin. Mechanistic studies revealed that GA3-induced apoptosis in HL-60 cells proceeded via both extrinsic and intrinsic pathways, with caspase-8 functioning upstream of caspase-9. In addition, GA3-driven apoptotic events were associated with up-regulation of Bax, down-regulation of Bcl-2 and cleavage of Bid. Moreover, GA3 triggered cytochrome c release from the mitochondria, in particular bypassing the involvement of the mitochondrial membrane potential. Conclusion: Better solubility and a potential anti-MDR activity, combined with a comparable antitumor efficacy, make GA3 a potential drug candidate in cancer therapy that deserves further investigation.
doi_str_mv 10.1038/aps.2009.3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4002400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>29669679</cqvip_id><sourcerecordid>1730259541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-bdff4ebfd67f9e280de7d0cef4911819fea486b8dbde3e06b364d7fbe4b0733a3</originalsourceid><addsrcrecordid>eNp9kUGP1SAUhRujccanG3-AIS6cRKdPKLSUjclkoqPJJG50TaDc9jG20AFanX8vL-_FUWNcADe5H4dzOUXxnOAtwbR9q-a4rTAWW_qgOCWc1SWvavYw1w0nJcMtPSmexHiDMa0oEY-LEyKqpqrr9rRIVxf0HCnk4Dsa1KT9YDukOmuQgWBXlewK5wh-7Ky2KaLZJ3AJKZdsWiYfMpoJmyxEZB3KVfB5V0jNfk4-2lhat_pxBYMm6HbK2TjFp8WjXo0Rnh3PTfH1w_svlx_L689Xny4vrsuOiTaV2vQ9A92bhvcCqhYb4AZ30DNBSEtED4q1jW6NNkABN5o2zPBeA9OYU6ropnh30J0XPYHpsvWgRjkHO6lwJ72y8s-Oszs5-FUyjKu8ssDZUSD42wVikpONHYyjcuCXKDlrSC14TTL56r9k0whB6nYPvvwLvPFLcPkbZEUorjjL1jfF6wPUBR9jgP6XZ4LlPnOZM5f7zOUefvH7lPfoMeQMvDkAMbfcAOH-yX_KHQ12O--G23xBatV96-0IshJ5joYL-hNLYsUC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213027473</pqid></control><display><type>article</type><title>GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xie, Hua ; Qin, Yu-xin ; Zhou, Yun-long ; Tong, Lin-jiang ; Lin, Li-ping ; Geng, Mei-yu ; Duan, Wen-hu ; Ding, Jian</creator><creatorcontrib>Xie, Hua ; Qin, Yu-xin ; Zhou, Yun-long ; Tong, Lin-jiang ; Lin, Li-ping ; Geng, Mei-yu ; Duan, Wen-hu ; Ding, Jian</creatorcontrib><description>Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study was to examine the antitumor activity of GA3 and the mechanism underlying it. Methods: The growth inhibition of cancer cell lines induced by GA3 was assessed using the SRB assay. DAPI staining, flow cytometry, a DNA fragment assay, and Western blot analysis were used to study the apoptotic mechanisms of GA3. Results: GA3 displayed wide cytotoxicity in diversified human cancer cell lines with a mean ICs0 value of 2.15 μmol/L. GA3 was also effective against multidrug resistant cells, with an average resistance factor (RF) that was much lower than that of the reference drug, doxorubicin. Mechanistic studies revealed that GA3-induced apoptosis in HL-60 cells proceeded via both extrinsic and intrinsic pathways, with caspase-8 functioning upstream of caspase-9. In addition, GA3-driven apoptotic events were associated with up-regulation of Bax, down-regulation of Bcl-2 and cleavage of Bid. Moreover, GA3 triggered cytochrome c release from the mitochondria, in particular bypassing the involvement of the mitochondrial membrane potential. Conclusion: Better solubility and a potential anti-MDR activity, combined with a comparable antitumor efficacy, make GA3 a potential drug candidate in cancer therapy that deserves further investigation.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/aps.2009.3</identifier><identifier>PMID: 19262558</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Apoptosis - physiology ; Biomedical and Life Sciences ; Biomedicine ; caspase ; Caspase 3 - metabolism ; Caspase 8 - metabolism ; Caspase 9 - metabolism ; Cell Line, Tumor - drug effects ; Cell Proliferation - drug effects ; Collagen Type XI - metabolism ; Cysteine Proteinase Inhibitors - metabolism ; DNA片段分析 ; Drug Resistance, Multiple - drug effects ; Enzyme Activation ; Garcinia - chemistry ; Garcinia hanburyi ; HL-60 Cells ; Humans ; Immunology ; Internal Medicine ; Medical Microbiology ; Mitochondria - drug effects ; Mitochondria - metabolism ; Molecular Structure ; Original ; original-article ; Pharmacology/Toxicology ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Vaccine ; Xanthones - chemistry ; Xanthones - pharmacology ; 抗肿瘤活性 ; 新藤黄酸 ; 线粒体膜电位 ; 细胞凋亡机制 ; 衍生物 ; 赤霉素</subject><ispartof>Acta pharmacologica Sinica, 2009-03, Vol.30 (3), p.346-354</ispartof><rights>CPS and SIMM 2009</rights><rights>Copyright Nature Publishing Group Mar 2009</rights><rights>Copyright © 2009 CPS and SIMM 2009 CPS and SIMM</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-bdff4ebfd67f9e280de7d0cef4911819fea486b8dbde3e06b364d7fbe4b0733a3</citedby><cites>FETCH-LOGICAL-c498t-bdff4ebfd67f9e280de7d0cef4911819fea486b8dbde3e06b364d7fbe4b0733a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/95561A/95561A.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002400/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002400/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19262558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Qin, Yu-xin</creatorcontrib><creatorcontrib>Zhou, Yun-long</creatorcontrib><creatorcontrib>Tong, Lin-jiang</creatorcontrib><creatorcontrib>Lin, Li-ping</creatorcontrib><creatorcontrib>Geng, Mei-yu</creatorcontrib><creatorcontrib>Duan, Wen-hu</creatorcontrib><creatorcontrib>Ding, Jian</creatorcontrib><title>GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><addtitle>Acta Pharmacologica Sinica</addtitle><description>Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study was to examine the antitumor activity of GA3 and the mechanism underlying it. Methods: The growth inhibition of cancer cell lines induced by GA3 was assessed using the SRB assay. DAPI staining, flow cytometry, a DNA fragment assay, and Western blot analysis were used to study the apoptotic mechanisms of GA3. Results: GA3 displayed wide cytotoxicity in diversified human cancer cell lines with a mean ICs0 value of 2.15 μmol/L. GA3 was also effective against multidrug resistant cells, with an average resistance factor (RF) that was much lower than that of the reference drug, doxorubicin. Mechanistic studies revealed that GA3-induced apoptosis in HL-60 cells proceeded via both extrinsic and intrinsic pathways, with caspase-8 functioning upstream of caspase-9. In addition, GA3-driven apoptotic events were associated with up-regulation of Bax, down-regulation of Bcl-2 and cleavage of Bid. Moreover, GA3 triggered cytochrome c release from the mitochondria, in particular bypassing the involvement of the mitochondrial membrane potential. Conclusion: Better solubility and a potential anti-MDR activity, combined with a comparable antitumor efficacy, make GA3 a potential drug candidate in cancer therapy that deserves further investigation.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>caspase</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 8 - metabolism</subject><subject>Caspase 9 - metabolism</subject><subject>Cell Line, Tumor - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Collagen Type XI - metabolism</subject><subject>Cysteine Proteinase Inhibitors - metabolism</subject><subject>DNA片段分析</subject><subject>Drug Resistance, Multiple - drug effects</subject><subject>Enzyme Activation</subject><subject>Garcinia - chemistry</subject><subject>Garcinia hanburyi</subject><subject>HL-60 Cells</subject><subject>Humans</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Medical Microbiology</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Structure</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacology/Toxicology</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Vaccine</subject><subject>Xanthones - chemistry</subject><subject>Xanthones - pharmacology</subject><subject>抗肿瘤活性</subject><subject>新藤黄酸</subject><subject>线粒体膜电位</subject><subject>细胞凋亡机制</subject><subject>衍生物</subject><subject>赤霉素</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUGP1SAUhRujccanG3-AIS6cRKdPKLSUjclkoqPJJG50TaDc9jG20AFanX8vL-_FUWNcADe5H4dzOUXxnOAtwbR9q-a4rTAWW_qgOCWc1SWvavYw1w0nJcMtPSmexHiDMa0oEY-LEyKqpqrr9rRIVxf0HCnk4Dsa1KT9YDukOmuQgWBXlewK5wh-7Ky2KaLZJ3AJKZdsWiYfMpoJmyxEZB3KVfB5V0jNfk4-2lhat_pxBYMm6HbK2TjFp8WjXo0Rnh3PTfH1w_svlx_L689Xny4vrsuOiTaV2vQ9A92bhvcCqhYb4AZ30DNBSEtED4q1jW6NNkABN5o2zPBeA9OYU6ropnh30J0XPYHpsvWgRjkHO6lwJ72y8s-Oszs5-FUyjKu8ssDZUSD42wVikpONHYyjcuCXKDlrSC14TTL56r9k0whB6nYPvvwLvPFLcPkbZEUorjjL1jfF6wPUBR9jgP6XZ4LlPnOZM5f7zOUefvH7lPfoMeQMvDkAMbfcAOH-yX_KHQ12O--G23xBatV96-0IshJ5joYL-hNLYsUC</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Xie, Hua</creator><creator>Qin, Yu-xin</creator><creator>Zhou, Yun-long</creator><creator>Tong, Lin-jiang</creator><creator>Lin, Li-ping</creator><creator>Geng, Mei-yu</creator><creator>Duan, Wen-hu</creator><creator>Ding, Jian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms</title><author>Xie, Hua ; Qin, Yu-xin ; Zhou, Yun-long ; Tong, Lin-jiang ; Lin, Li-ping ; Geng, Mei-yu ; Duan, Wen-hu ; Ding, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-bdff4ebfd67f9e280de7d0cef4911819fea486b8dbde3e06b364d7fbe4b0733a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>caspase</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 8 - metabolism</topic><topic>Caspase 9 - metabolism</topic><topic>Cell Line, Tumor - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Collagen Type XI - metabolism</topic><topic>Cysteine Proteinase Inhibitors - metabolism</topic><topic>DNA片段分析</topic><topic>Drug Resistance, Multiple - drug effects</topic><topic>Enzyme Activation</topic><topic>Garcinia - chemistry</topic><topic>Garcinia hanburyi</topic><topic>HL-60 Cells</topic><topic>Humans</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Medical Microbiology</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Structure</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacology/Toxicology</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Vaccine</topic><topic>Xanthones - chemistry</topic><topic>Xanthones - pharmacology</topic><topic>抗肿瘤活性</topic><topic>新藤黄酸</topic><topic>线粒体膜电位</topic><topic>细胞凋亡机制</topic><topic>衍生物</topic><topic>赤霉素</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Qin, Yu-xin</creatorcontrib><creatorcontrib>Zhou, Yun-long</creatorcontrib><creatorcontrib>Tong, Lin-jiang</creatorcontrib><creatorcontrib>Lin, Li-ping</creatorcontrib><creatorcontrib>Geng, Mei-yu</creatorcontrib><creatorcontrib>Duan, Wen-hu</creatorcontrib><creatorcontrib>Ding, Jian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Hua</au><au>Qin, Yu-xin</au><au>Zhou, Yun-long</au><au>Tong, Lin-jiang</au><au>Lin, Li-ping</au><au>Geng, Mei-yu</au><au>Duan, Wen-hu</au><au>Ding, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><addtitle>Acta Pharmacologica Sinica</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>30</volume><issue>3</issue><spage>346</spage><epage>354</epage><pages>346-354</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study was to examine the antitumor activity of GA3 and the mechanism underlying it. Methods: The growth inhibition of cancer cell lines induced by GA3 was assessed using the SRB assay. DAPI staining, flow cytometry, a DNA fragment assay, and Western blot analysis were used to study the apoptotic mechanisms of GA3. Results: GA3 displayed wide cytotoxicity in diversified human cancer cell lines with a mean ICs0 value of 2.15 μmol/L. GA3 was also effective against multidrug resistant cells, with an average resistance factor (RF) that was much lower than that of the reference drug, doxorubicin. Mechanistic studies revealed that GA3-induced apoptosis in HL-60 cells proceeded via both extrinsic and intrinsic pathways, with caspase-8 functioning upstream of caspase-9. In addition, GA3-driven apoptotic events were associated with up-regulation of Bax, down-regulation of Bcl-2 and cleavage of Bid. Moreover, GA3 triggered cytochrome c release from the mitochondria, in particular bypassing the involvement of the mitochondrial membrane potential. Conclusion: Better solubility and a potential anti-MDR activity, combined with a comparable antitumor efficacy, make GA3 a potential drug candidate in cancer therapy that deserves further investigation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19262558</pmid><doi>10.1038/aps.2009.3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1671-4083
ispartof Acta pharmacologica Sinica, 2009-03, Vol.30 (3), p.346-354
issn 1671-4083
1745-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4002400
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antineoplastic Agents - pharmacology
Apoptosis - drug effects
Apoptosis - physiology
Biomedical and Life Sciences
Biomedicine
caspase
Caspase 3 - metabolism
Caspase 8 - metabolism
Caspase 9 - metabolism
Cell Line, Tumor - drug effects
Cell Proliferation - drug effects
Collagen Type XI - metabolism
Cysteine Proteinase Inhibitors - metabolism
DNA片段分析
Drug Resistance, Multiple - drug effects
Enzyme Activation
Garcinia - chemistry
Garcinia hanburyi
HL-60 Cells
Humans
Immunology
Internal Medicine
Medical Microbiology
Mitochondria - drug effects
Mitochondria - metabolism
Molecular Structure
Original
original-article
Pharmacology/Toxicology
Proto-Oncogene Proteins c-bcl-2 - metabolism
Vaccine
Xanthones - chemistry
Xanthones - pharmacology
抗肿瘤活性
新藤黄酸
线粒体膜电位
细胞凋亡机制
衍生物
赤霉素
title GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GA3,%20a%20new%20gambogic%20acid%20derivative,%20exhibits%20potent%20antitumor%20activities%20in%20vitro%20via%20apoptosis-involved%20mechanisms&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Xie,%20Hua&rft.date=2009-03-01&rft.volume=30&rft.issue=3&rft.spage=346&rft.epage=354&rft.pages=346-354&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/aps.2009.3&rft_dat=%3Cproquest_pubme%3E1730259541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213027473&rft_id=info:pmid/19262558&rft_cqvip_id=29669679&rfr_iscdi=true