Fate and plasticity of renin precursors in development and disease

Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra rena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric nephrology (Berlin, West) West), 2014-04, Vol.29 (4), p.721-726
Hauptverfasser: Gomez, R. Ariel, Belyea, Brian, Medrano, Silvia, Pentz, Ellen S., Sequeira-Lopez, Maria Luisa S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 4
container_start_page 721
container_title Pediatric nephrology (Berlin, West)
container_volume 29
creator Gomez, R. Ariel
Belyea, Brian
Medrano, Silvia
Pentz, Ellen S.
Sequeira-Lopez, Maria Luisa S.
description Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype—and ultimately the availability of renin—during basal conditions and in response to homeostatic threats. Notably, key transcriptional ( Creb/CBP/p300, RBP-J ) and posttranscriptional ( miR-330 , miR125b-5p ) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.
doi_str_mv 10.1007/s00467-013-2688-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3999616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370755570</galeid><sourcerecordid>A370755570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-e5a425a3a80cc30c574a81e3d91b55ef1e96135b55c4887de2752afa10079af33</originalsourceid><addsrcrecordid>eNp1kl9rFDEUxQdR7Fr9AL7IgCC-TL2ZJJPkRajFVqHgi0LfQpq5s5syk4zJTKHf3ozbLruykof8-52T3MMtircEzgiA-JQAWCMqILSqGykreFasCKN1RZS8eV6sQFFSASM3J8WrlO4AQHLZvCxOakapYCBWxZdLM2FpfFuOvUmTs256KENXRvTOl2NEO8cUYirzrsV77MM4oJ_-KlqX0CR8XbzoTJ_wzeN8Wvy6_Prz4lt1_ePq-8X5dWUbUU8VcsNqbqiRYC0FywUzkiBtFbnlHDuCqiGU57VlUooWa8Fr05mlUmU6Sk-Lz1vfcb4dsLX5G9H0eoxuMPFBB-P04Y13G70O95oqla2bbPDx0SCG3zOmSQ8uWex74zHMSRMO0EhKxPLW-3_QuzBHn8vThCnFlKhz6jtqbXrUznchv2sXU31OBQjOuYBMVUeoNXrMnwweO5ePD_izI3weLQ7OHhV82BNs0PTTJoV-nlzw6RAkW9DGkFLEbhceAb3krLcdpXNteukovWje7ae-Uzy1UAbqLZDylV9j3Ivqv65_ACMI02s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499497201</pqid></control><display><type>article</type><title>Fate and plasticity of renin precursors in development and disease</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Gomez, R. Ariel ; Belyea, Brian ; Medrano, Silvia ; Pentz, Ellen S. ; Sequeira-Lopez, Maria Luisa S.</creator><creatorcontrib>Gomez, R. Ariel ; Belyea, Brian ; Medrano, Silvia ; Pentz, Ellen S. ; Sequeira-Lopez, Maria Luisa S.</creatorcontrib><description>Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype—and ultimately the availability of renin—during basal conditions and in response to homeostatic threats. Notably, key transcriptional ( Creb/CBP/p300, RBP-J ) and posttranscriptional ( miR-330 , miR125b-5p ) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.</description><identifier>ISSN: 0931-041X</identifier><identifier>EISSN: 1432-198X</identifier><identifier>DOI: 10.1007/s00467-013-2688-0</identifier><identifier>PMID: 24337407</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Blood pressure ; Cells ; Electrolytes ; Genotype &amp; phenotype ; Homeostasis ; Humans ; Kidney - embryology ; Kidney - metabolism ; Kidneys ; Localization ; Medicine ; Medicine &amp; Public Health ; Nephrology ; Organogenesis - physiology ; Pediatrics ; Physiological aspects ; Plasticity ; Properties ; Renin ; Renin - metabolism ; Review ; Smooth muscle ; Stem Cells - metabolism ; Urology</subject><ispartof>Pediatric nephrology (Berlin, West), 2014-04, Vol.29 (4), p.721-726</ispartof><rights>IPNA 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>IPNA 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-e5a425a3a80cc30c574a81e3d91b55ef1e96135b55c4887de2752afa10079af33</citedby><cites>FETCH-LOGICAL-c672t-e5a425a3a80cc30c574a81e3d91b55ef1e96135b55c4887de2752afa10079af33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00467-013-2688-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00467-013-2688-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24337407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez, R. Ariel</creatorcontrib><creatorcontrib>Belyea, Brian</creatorcontrib><creatorcontrib>Medrano, Silvia</creatorcontrib><creatorcontrib>Pentz, Ellen S.</creatorcontrib><creatorcontrib>Sequeira-Lopez, Maria Luisa S.</creatorcontrib><title>Fate and plasticity of renin precursors in development and disease</title><title>Pediatric nephrology (Berlin, West)</title><addtitle>Pediatr Nephrol</addtitle><addtitle>Pediatr Nephrol</addtitle><description>Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype—and ultimately the availability of renin—during basal conditions and in response to homeostatic threats. Notably, key transcriptional ( Creb/CBP/p300, RBP-J ) and posttranscriptional ( miR-330 , miR125b-5p ) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.</description><subject>Animals</subject><subject>Blood pressure</subject><subject>Cells</subject><subject>Electrolytes</subject><subject>Genotype &amp; phenotype</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kidney - embryology</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Localization</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nephrology</subject><subject>Organogenesis - physiology</subject><subject>Pediatrics</subject><subject>Physiological aspects</subject><subject>Plasticity</subject><subject>Properties</subject><subject>Renin</subject><subject>Renin - metabolism</subject><subject>Review</subject><subject>Smooth muscle</subject><subject>Stem Cells - metabolism</subject><subject>Urology</subject><issn>0931-041X</issn><issn>1432-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kl9rFDEUxQdR7Fr9AL7IgCC-TL2ZJJPkRajFVqHgi0LfQpq5s5syk4zJTKHf3ozbLruykof8-52T3MMtircEzgiA-JQAWCMqILSqGykreFasCKN1RZS8eV6sQFFSASM3J8WrlO4AQHLZvCxOakapYCBWxZdLM2FpfFuOvUmTs256KENXRvTOl2NEO8cUYirzrsV77MM4oJ_-KlqX0CR8XbzoTJ_wzeN8Wvy6_Prz4lt1_ePq-8X5dWUbUU8VcsNqbqiRYC0FywUzkiBtFbnlHDuCqiGU57VlUooWa8Fr05mlUmU6Sk-Lz1vfcb4dsLX5G9H0eoxuMPFBB-P04Y13G70O95oqla2bbPDx0SCG3zOmSQ8uWex74zHMSRMO0EhKxPLW-3_QuzBHn8vThCnFlKhz6jtqbXrUznchv2sXU31OBQjOuYBMVUeoNXrMnwweO5ePD_izI3weLQ7OHhV82BNs0PTTJoV-nlzw6RAkW9DGkFLEbhceAb3krLcdpXNteukovWje7ae-Uzy1UAbqLZDylV9j3Ivqv65_ACMI02s</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Gomez, R. Ariel</creator><creator>Belyea, Brian</creator><creator>Medrano, Silvia</creator><creator>Pentz, Ellen S.</creator><creator>Sequeira-Lopez, Maria Luisa S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Fate and plasticity of renin precursors in development and disease</title><author>Gomez, R. Ariel ; Belyea, Brian ; Medrano, Silvia ; Pentz, Ellen S. ; Sequeira-Lopez, Maria Luisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-e5a425a3a80cc30c574a81e3d91b55ef1e96135b55c4887de2752afa10079af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Blood pressure</topic><topic>Cells</topic><topic>Electrolytes</topic><topic>Genotype &amp; phenotype</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kidney - embryology</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Localization</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nephrology</topic><topic>Organogenesis - physiology</topic><topic>Pediatrics</topic><topic>Physiological aspects</topic><topic>Plasticity</topic><topic>Properties</topic><topic>Renin</topic><topic>Renin - metabolism</topic><topic>Review</topic><topic>Smooth muscle</topic><topic>Stem Cells - metabolism</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, R. Ariel</creatorcontrib><creatorcontrib>Belyea, Brian</creatorcontrib><creatorcontrib>Medrano, Silvia</creatorcontrib><creatorcontrib>Pentz, Ellen S.</creatorcontrib><creatorcontrib>Sequeira-Lopez, Maria Luisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pediatric nephrology (Berlin, West)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez, R. Ariel</au><au>Belyea, Brian</au><au>Medrano, Silvia</au><au>Pentz, Ellen S.</au><au>Sequeira-Lopez, Maria Luisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fate and plasticity of renin precursors in development and disease</atitle><jtitle>Pediatric nephrology (Berlin, West)</jtitle><stitle>Pediatr Nephrol</stitle><addtitle>Pediatr Nephrol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>29</volume><issue>4</issue><spage>721</spage><epage>726</epage><pages>721-726</pages><issn>0931-041X</issn><eissn>1432-198X</eissn><abstract>Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype—and ultimately the availability of renin—during basal conditions and in response to homeostatic threats. Notably, key transcriptional ( Creb/CBP/p300, RBP-J ) and posttranscriptional ( miR-330 , miR125b-5p ) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24337407</pmid><doi>10.1007/s00467-013-2688-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0931-041X
ispartof Pediatric nephrology (Berlin, West), 2014-04, Vol.29 (4), p.721-726
issn 0931-041X
1432-198X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3999616
source MEDLINE; SpringerNature Journals
subjects Animals
Blood pressure
Cells
Electrolytes
Genotype & phenotype
Homeostasis
Humans
Kidney - embryology
Kidney - metabolism
Kidneys
Localization
Medicine
Medicine & Public Health
Nephrology
Organogenesis - physiology
Pediatrics
Physiological aspects
Plasticity
Properties
Renin
Renin - metabolism
Review
Smooth muscle
Stem Cells - metabolism
Urology
title Fate and plasticity of renin precursors in development and disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fate%20and%20plasticity%20of%20renin%20precursors%20in%20development%20and%20disease&rft.jtitle=Pediatric%20nephrology%20(Berlin,%20West)&rft.au=Gomez,%20R.%20Ariel&rft.date=2014-04-01&rft.volume=29&rft.issue=4&rft.spage=721&rft.epage=726&rft.pages=721-726&rft.issn=0931-041X&rft.eissn=1432-198X&rft_id=info:doi/10.1007/s00467-013-2688-0&rft_dat=%3Cgale_pubme%3EA370755570%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499497201&rft_id=info:pmid/24337407&rft_galeid=A370755570&rfr_iscdi=true