The metastable brain

Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it don...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2014-01, Vol.81 (1), p.35-48
Hauptverfasser: Tognoli, Emmanuelle, Kelso, J A Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 35
container_title Neuron (Cambridge, Mass.)
container_volume 81
creator Tognoli, Emmanuelle
Kelso, J A Scott
description Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.
doi_str_mv 10.1016/j.neuron.2013.12.022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3997258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490766284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EoqWwMSJUiYUl4c527HhBQhVfUiWWMltO7NBEaVLsBIl_T6qWCliYbrj3Ht3dQ8gFQoyA4qaKG9f7tokpIIuRxkDpARkjKBlxVOqQjCFVIhJUshE5CaECQJ4oPCYjyjmiZDAm54ulm65cZ0JnstpNM2_K5pQcFaYO7mxXJ-T14X4xe4rmL4_Ps7t5lHOhuigBawVYYTkVvOAmswYLYwtp0xRE4lKR2aEUInPOAHCa89wWGcszJdClhk3I7Za77rOVs7lrOm9qvfblyvhP3ZpS_-405VK_tR-aKSVpkg6A6x3At--9C51elSF3dW0a1_ZBY4JCMpUI-n-UK5BC0JQP0as_0artfTN8YgACSxOZ4AbIt6nctyF4V-z3RtAbQ7rSW0N6Y0gj1YOhYezy5837oW8l7Av4N43H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503857512</pqid></control><display><type>article</type><title>The metastable brain</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tognoli, Emmanuelle ; Kelso, J A Scott</creator><creatorcontrib>Tognoli, Emmanuelle ; Kelso, J A Scott</creatorcontrib><description>Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2013.12.022</identifier><identifier>PMID: 24411730</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Animals ; Behavior ; Brain - cytology ; Brain - physiology ; Brain research ; Humans ; Models, Neurological ; Neural Pathways - physiology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Phase transitions</subject><ispartof>Neuron (Cambridge, Mass.), 2014-01, Vol.81 (1), p.35-48</ispartof><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 8, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</citedby><cites>FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24411730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tognoli, Emmanuelle</creatorcontrib><creatorcontrib>Kelso, J A Scott</creatorcontrib><title>The metastable brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.</description><subject>Animals</subject><subject>Behavior</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Phase transitions</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0EoqWwMSJUiYUl4c527HhBQhVfUiWWMltO7NBEaVLsBIl_T6qWCliYbrj3Ht3dQ8gFQoyA4qaKG9f7tokpIIuRxkDpARkjKBlxVOqQjCFVIhJUshE5CaECQJ4oPCYjyjmiZDAm54ulm65cZ0JnstpNM2_K5pQcFaYO7mxXJ-T14X4xe4rmL4_Ps7t5lHOhuigBawVYYTkVvOAmswYLYwtp0xRE4lKR2aEUInPOAHCa89wWGcszJdClhk3I7Za77rOVs7lrOm9qvfblyvhP3ZpS_-405VK_tR-aKSVpkg6A6x3At--9C51elSF3dW0a1_ZBY4JCMpUI-n-UK5BC0JQP0as_0artfTN8YgACSxOZ4AbIt6nctyF4V-z3RtAbQ7rSW0N6Y0gj1YOhYezy5837oW8l7Av4N43H</recordid><startdate>20140108</startdate><enddate>20140108</enddate><creator>Tognoli, Emmanuelle</creator><creator>Kelso, J A Scott</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140108</creationdate><title>The metastable brain</title><author>Tognoli, Emmanuelle ; Kelso, J A Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tognoli, Emmanuelle</creatorcontrib><creatorcontrib>Kelso, J A Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tognoli, Emmanuelle</au><au>Kelso, J A Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The metastable brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-01-08</date><risdate>2014</risdate><volume>81</volume><issue>1</issue><spage>35</spage><epage>48</epage><pages>35-48</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>24411730</pmid><doi>10.1016/j.neuron.2013.12.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-01, Vol.81 (1), p.35-48
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3997258
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Behavior
Brain - cytology
Brain - physiology
Brain research
Humans
Models, Neurological
Neural Pathways - physiology
Neuronal Plasticity - physiology
Neurons - physiology
Phase transitions
title The metastable brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20metastable%20brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tognoli,%20Emmanuelle&rft.date=2014-01-08&rft.volume=81&rft.issue=1&rft.spage=35&rft.epage=48&rft.pages=35-48&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2013.12.022&rft_dat=%3Cproquest_pubme%3E1490766284%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503857512&rft_id=info:pmid/24411730&rfr_iscdi=true