The metastable brain
Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it don...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2014-01, Vol.81 (1), p.35-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 81 |
creator | Tognoli, Emmanuelle Kelso, J A Scott |
description | Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions. |
doi_str_mv | 10.1016/j.neuron.2013.12.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3997258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490766284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EoqWwMSJUiYUl4c527HhBQhVfUiWWMltO7NBEaVLsBIl_T6qWCliYbrj3Ht3dQ8gFQoyA4qaKG9f7tokpIIuRxkDpARkjKBlxVOqQjCFVIhJUshE5CaECQJ4oPCYjyjmiZDAm54ulm65cZ0JnstpNM2_K5pQcFaYO7mxXJ-T14X4xe4rmL4_Ps7t5lHOhuigBawVYYTkVvOAmswYLYwtp0xRE4lKR2aEUInPOAHCa89wWGcszJdClhk3I7Za77rOVs7lrOm9qvfblyvhP3ZpS_-405VK_tR-aKSVpkg6A6x3At--9C51elSF3dW0a1_ZBY4JCMpUI-n-UK5BC0JQP0as_0artfTN8YgACSxOZ4AbIt6nctyF4V-z3RtAbQ7rSW0N6Y0gj1YOhYezy5837oW8l7Av4N43H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503857512</pqid></control><display><type>article</type><title>The metastable brain</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tognoli, Emmanuelle ; Kelso, J A Scott</creator><creatorcontrib>Tognoli, Emmanuelle ; Kelso, J A Scott</creatorcontrib><description>Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2013.12.022</identifier><identifier>PMID: 24411730</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Animals ; Behavior ; Brain - cytology ; Brain - physiology ; Brain research ; Humans ; Models, Neurological ; Neural Pathways - physiology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Phase transitions</subject><ispartof>Neuron (Cambridge, Mass.), 2014-01, Vol.81 (1), p.35-48</ispartof><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 8, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</citedby><cites>FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24411730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tognoli, Emmanuelle</creatorcontrib><creatorcontrib>Kelso, J A Scott</creatorcontrib><title>The metastable brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.</description><subject>Animals</subject><subject>Behavior</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Phase transitions</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0EoqWwMSJUiYUl4c527HhBQhVfUiWWMltO7NBEaVLsBIl_T6qWCliYbrj3Ht3dQ8gFQoyA4qaKG9f7tokpIIuRxkDpARkjKBlxVOqQjCFVIhJUshE5CaECQJ4oPCYjyjmiZDAm54ulm65cZ0JnstpNM2_K5pQcFaYO7mxXJ-T14X4xe4rmL4_Ps7t5lHOhuigBawVYYTkVvOAmswYLYwtp0xRE4lKR2aEUInPOAHCa89wWGcszJdClhk3I7Za77rOVs7lrOm9qvfblyvhP3ZpS_-405VK_tR-aKSVpkg6A6x3At--9C51elSF3dW0a1_ZBY4JCMpUI-n-UK5BC0JQP0as_0artfTN8YgACSxOZ4AbIt6nctyF4V-z3RtAbQ7rSW0N6Y0gj1YOhYezy5837oW8l7Av4N43H</recordid><startdate>20140108</startdate><enddate>20140108</enddate><creator>Tognoli, Emmanuelle</creator><creator>Kelso, J A Scott</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140108</creationdate><title>The metastable brain</title><author>Tognoli, Emmanuelle ; Kelso, J A Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-50dd60d6d4264f4abda1fadf7d88065e86bd65ef6beea0042c4cdfb3cb961e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tognoli, Emmanuelle</creatorcontrib><creatorcontrib>Kelso, J A Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tognoli, Emmanuelle</au><au>Kelso, J A Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The metastable brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-01-08</date><risdate>2014</risdate><volume>81</volume><issue>1</issue><spage>35</spage><epage>48</epage><pages>35-48</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>24411730</pmid><doi>10.1016/j.neuron.2013.12.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2014-01, Vol.81 (1), p.35-48 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3997258 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Behavior Brain - cytology Brain - physiology Brain research Humans Models, Neurological Neural Pathways - physiology Neuronal Plasticity - physiology Neurons - physiology Phase transitions |
title | The metastable brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20metastable%20brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tognoli,%20Emmanuelle&rft.date=2014-01-08&rft.volume=81&rft.issue=1&rft.spage=35&rft.epage=48&rft.pages=35-48&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2013.12.022&rft_dat=%3Cproquest_pubme%3E1490766284%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503857512&rft_id=info:pmid/24411730&rfr_iscdi=true |