Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways

Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2014-05, Vol.8 (5), p.1069-1078
Hauptverfasser: Wang, Feng-Ping, Zhang, Yu, Chen, Ying, He, Ying, Qi, Ji, Hinrichs, Kai-Uwe, Zhang, Xin-Xu, Xiao, Xiang, Boon, Nico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1078
container_issue 5
container_start_page 1069
container_title The ISME Journal
container_volume 8
creator Wang, Feng-Ping
Zhang, Yu
Chen, Ying
He, Ying
Qi, Ji
Hinrichs, Kai-Uwe
Zhang, Xin-Xu
Xiao, Xiang
Boon, Nico
description Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensively studied for more than a decade, central mechanistic details remain unresolved. On the basis of an integrated analysis of both environmental metatranscriptome and single-aggregate genome of a highly active AOM enrichment dominated by ANME-2a, we provide evidence for a complete and functioning AOM pathway in ANME-2a. All genes required for performing the seven steps of methanogenesis from CO 2 were found present and actively expressed. Meanwhile, genes for energy conservation and electron transportation including those encoding F 420 H 2 dehydrogenase (Fpo), the cytoplasmic and membrane-associated Coenzyme B–Coenzyme M heterodisulfide (CoB-S-SCoM) reductase (HdrABC, HdrDE), cytochrome C and the Rhodobacter nitrogen fixation (Rnf) complex were identified and expressed, whereas genes encoding for hydrogenases were absent. Thus, ANME-2a is likely performing AOM through a complete reversal of methanogenesis from CO 2 reduction without involvement of canonical hydrogenase. ANME-2a is demonstrated to possess versatile electron transfer pathways that would provide the organism with more flexibility in substrate utilization and capacity for rapid adjustment to fluctuating environments. This work lays the foundation for understanding the environmental niche differentiation, physiology and evolution of different ANME subgroups.
doi_str_mv 10.1038/ismej.2013.212
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518618445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c5d0df20fa19ff82efa216b78ed9c470eaaa716c99ffec3bafd60d05793225283</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS1ERUvhyhGtxKWXbP2R2MmlUlW1gFTUC5zNrD3ZeJXYwc4W2r8eZ7esCuJij_x-fp7xI-Qdo0tGRX3u0oCbJadMLDnjL8gJUxUrlFD05aGW_Ji8TmlDaaWkVK_IMS-FqGquTsj3Lzh14MMUw9g5s4BoOkBYjCElTMn59cK6e4zruRp2LBbhl7PucT4BbxfYo8nXfTFF8GkMcZqVEabuJzykN-SohT7h26f9lHy7uf569am4vfv4-erytjAVL6e8WmpbTltgTdvWHFvgTK5UjbYxpaIIAIpJ02QVjVhBayW1eaBGcF7xWpySi73vuF0NaA363E6vx-gGiA86gNN_K951eh3utWgaKRuWDc6eDGL4scU06cElg32fJw7bpFnFasnqsqwy-uEfdBO20efxdhSVvNpRyz1lYv7MiO2hGUb1HJ7ehafn8HQOL194_3yEA_4nrQyc74GUJb_G-Ozd_1v-BvF3qfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518062545</pqid></control><display><type>article</type><title>Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Feng-Ping ; Zhang, Yu ; Chen, Ying ; He, Ying ; Qi, Ji ; Hinrichs, Kai-Uwe ; Zhang, Xin-Xu ; Xiao, Xiang ; Boon, Nico</creator><creatorcontrib>Wang, Feng-Ping ; Zhang, Yu ; Chen, Ying ; He, Ying ; Qi, Ji ; Hinrichs, Kai-Uwe ; Zhang, Xin-Xu ; Xiao, Xiang ; Boon, Nico</creatorcontrib><description>Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensively studied for more than a decade, central mechanistic details remain unresolved. On the basis of an integrated analysis of both environmental metatranscriptome and single-aggregate genome of a highly active AOM enrichment dominated by ANME-2a, we provide evidence for a complete and functioning AOM pathway in ANME-2a. All genes required for performing the seven steps of methanogenesis from CO 2 were found present and actively expressed. Meanwhile, genes for energy conservation and electron transportation including those encoding F 420 H 2 dehydrogenase (Fpo), the cytoplasmic and membrane-associated Coenzyme B–Coenzyme M heterodisulfide (CoB-S-SCoM) reductase (HdrABC, HdrDE), cytochrome C and the Rhodobacter nitrogen fixation (Rnf) complex were identified and expressed, whereas genes encoding for hydrogenases were absent. Thus, ANME-2a is likely performing AOM through a complete reversal of methanogenesis from CO 2 reduction without involvement of canonical hydrogenase. ANME-2a is demonstrated to possess versatile electron transfer pathways that would provide the organism with more flexibility in substrate utilization and capacity for rapid adjustment to fluctuating environments. This work lays the foundation for understanding the environmental niche differentiation, physiology and evolution of different ANME subgroups.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.212</identifier><identifier>PMID: 24335827</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/2565/855 ; 631/326/26/2527 ; 631/326/47 ; Acetates - metabolism ; Archaea - enzymology ; Archaea - genetics ; Archaea - metabolism ; Atmosphere ; Biomedical and Life Sciences ; Carbon dioxide ; Cytochrome ; Dehydrogenase ; Ecology ; Electrons ; Energy conservation ; Evolutionary Biology ; Gene Expression Regulation, Archaeal ; Genome, Archaeal ; Geologic Sediments - microbiology ; Hydrogen - metabolism ; Life Sciences ; Marine environment ; Methane ; Methane - metabolism ; Methanogenesis ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Nitrogen fixation ; Original ; original-article ; Oxidation ; Oxidation-Reduction ; Oxidoreductases ; Physiology</subject><ispartof>The ISME Journal, 2014-05, Vol.8 (5), p.1069-1078</ispartof><rights>International Society for Microbial Ecology 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><rights>Copyright © 2014 International Society for Microbial Ecology 2014 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c5d0df20fa19ff82efa216b78ed9c470eaaa716c99ffec3bafd60d05793225283</citedby><cites>FETCH-LOGICAL-c524t-c5d0df20fa19ff82efa216b78ed9c470eaaa716c99ffec3bafd60d05793225283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996691/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996691/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24335827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Feng-Ping</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Qi, Ji</creatorcontrib><creatorcontrib>Hinrichs, Kai-Uwe</creatorcontrib><creatorcontrib>Zhang, Xin-Xu</creatorcontrib><creatorcontrib>Xiao, Xiang</creatorcontrib><creatorcontrib>Boon, Nico</creatorcontrib><title>Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensively studied for more than a decade, central mechanistic details remain unresolved. On the basis of an integrated analysis of both environmental metatranscriptome and single-aggregate genome of a highly active AOM enrichment dominated by ANME-2a, we provide evidence for a complete and functioning AOM pathway in ANME-2a. All genes required for performing the seven steps of methanogenesis from CO 2 were found present and actively expressed. Meanwhile, genes for energy conservation and electron transportation including those encoding F 420 H 2 dehydrogenase (Fpo), the cytoplasmic and membrane-associated Coenzyme B–Coenzyme M heterodisulfide (CoB-S-SCoM) reductase (HdrABC, HdrDE), cytochrome C and the Rhodobacter nitrogen fixation (Rnf) complex were identified and expressed, whereas genes encoding for hydrogenases were absent. Thus, ANME-2a is likely performing AOM through a complete reversal of methanogenesis from CO 2 reduction without involvement of canonical hydrogenase. ANME-2a is demonstrated to possess versatile electron transfer pathways that would provide the organism with more flexibility in substrate utilization and capacity for rapid adjustment to fluctuating environments. This work lays the foundation for understanding the environmental niche differentiation, physiology and evolution of different ANME subgroups.</description><subject>631/326/2565/855</subject><subject>631/326/26/2527</subject><subject>631/326/47</subject><subject>Acetates - metabolism</subject><subject>Archaea - enzymology</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Atmosphere</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Cytochrome</subject><subject>Dehydrogenase</subject><subject>Ecology</subject><subject>Electrons</subject><subject>Energy conservation</subject><subject>Evolutionary Biology</subject><subject>Gene Expression Regulation, Archaeal</subject><subject>Genome, Archaeal</subject><subject>Geologic Sediments - microbiology</subject><subject>Hydrogen - metabolism</subject><subject>Life Sciences</subject><subject>Marine environment</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanogenesis</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Nitrogen fixation</subject><subject>Original</subject><subject>original-article</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases</subject><subject>Physiology</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1v1DAQxS1ERUvhyhGtxKWXbP2R2MmlUlW1gFTUC5zNrD3ZeJXYwc4W2r8eZ7esCuJij_x-fp7xI-Qdo0tGRX3u0oCbJadMLDnjL8gJUxUrlFD05aGW_Ji8TmlDaaWkVK_IMS-FqGquTsj3Lzh14MMUw9g5s4BoOkBYjCElTMn59cK6e4zruRp2LBbhl7PucT4BbxfYo8nXfTFF8GkMcZqVEabuJzykN-SohT7h26f9lHy7uf569am4vfv4-erytjAVL6e8WmpbTltgTdvWHFvgTK5UjbYxpaIIAIpJ02QVjVhBayW1eaBGcF7xWpySi73vuF0NaA363E6vx-gGiA86gNN_K951eh3utWgaKRuWDc6eDGL4scU06cElg32fJw7bpFnFasnqsqwy-uEfdBO20efxdhSVvNpRyz1lYv7MiO2hGUb1HJ7ehafn8HQOL194_3yEA_4nrQyc74GUJb_G-Ozd_1v-BvF3qfk</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Wang, Feng-Ping</creator><creator>Zhang, Yu</creator><creator>Chen, Ying</creator><creator>He, Ying</creator><creator>Qi, Ji</creator><creator>Hinrichs, Kai-Uwe</creator><creator>Zhang, Xin-Xu</creator><creator>Xiao, Xiang</creator><creator>Boon, Nico</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140501</creationdate><title>Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways</title><author>Wang, Feng-Ping ; Zhang, Yu ; Chen, Ying ; He, Ying ; Qi, Ji ; Hinrichs, Kai-Uwe ; Zhang, Xin-Xu ; Xiao, Xiang ; Boon, Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c5d0df20fa19ff82efa216b78ed9c470eaaa716c99ffec3bafd60d05793225283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/326/2565/855</topic><topic>631/326/26/2527</topic><topic>631/326/47</topic><topic>Acetates - metabolism</topic><topic>Archaea - enzymology</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Atmosphere</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Cytochrome</topic><topic>Dehydrogenase</topic><topic>Ecology</topic><topic>Electrons</topic><topic>Energy conservation</topic><topic>Evolutionary Biology</topic><topic>Gene Expression Regulation, Archaeal</topic><topic>Genome, Archaeal</topic><topic>Geologic Sediments - microbiology</topic><topic>Hydrogen - metabolism</topic><topic>Life Sciences</topic><topic>Marine environment</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanogenesis</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Nitrogen fixation</topic><topic>Original</topic><topic>original-article</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases</topic><topic>Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng-Ping</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Qi, Ji</creatorcontrib><creatorcontrib>Hinrichs, Kai-Uwe</creatorcontrib><creatorcontrib>Zhang, Xin-Xu</creatorcontrib><creatorcontrib>Xiao, Xiang</creatorcontrib><creatorcontrib>Boon, Nico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng-Ping</au><au>Zhang, Yu</au><au>Chen, Ying</au><au>He, Ying</au><au>Qi, Ji</au><au>Hinrichs, Kai-Uwe</au><au>Zhang, Xin-Xu</au><au>Xiao, Xiang</au><au>Boon, Nico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>1069</spage><epage>1078</epage><pages>1069-1078</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Anaerobic oxidation of methane (AOM) is a crucial process limiting the flux of methane from marine environments to the atmosphere. The process is thought to be mediated by three groups of uncultivated methane-oxidizing archaea (ANME-1, 2 and 3). Although the responsible microbes have been intensively studied for more than a decade, central mechanistic details remain unresolved. On the basis of an integrated analysis of both environmental metatranscriptome and single-aggregate genome of a highly active AOM enrichment dominated by ANME-2a, we provide evidence for a complete and functioning AOM pathway in ANME-2a. All genes required for performing the seven steps of methanogenesis from CO 2 were found present and actively expressed. Meanwhile, genes for energy conservation and electron transportation including those encoding F 420 H 2 dehydrogenase (Fpo), the cytoplasmic and membrane-associated Coenzyme B–Coenzyme M heterodisulfide (CoB-S-SCoM) reductase (HdrABC, HdrDE), cytochrome C and the Rhodobacter nitrogen fixation (Rnf) complex were identified and expressed, whereas genes encoding for hydrogenases were absent. Thus, ANME-2a is likely performing AOM through a complete reversal of methanogenesis from CO 2 reduction without involvement of canonical hydrogenase. ANME-2a is demonstrated to possess versatile electron transfer pathways that would provide the organism with more flexibility in substrate utilization and capacity for rapid adjustment to fluctuating environments. This work lays the foundation for understanding the environmental niche differentiation, physiology and evolution of different ANME subgroups.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24335827</pmid><doi>10.1038/ismej.2013.212</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2014-05, Vol.8 (5), p.1069-1078
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996691
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/326/2565/855
631/326/26/2527
631/326/47
Acetates - metabolism
Archaea - enzymology
Archaea - genetics
Archaea - metabolism
Atmosphere
Biomedical and Life Sciences
Carbon dioxide
Cytochrome
Dehydrogenase
Ecology
Electrons
Energy conservation
Evolutionary Biology
Gene Expression Regulation, Archaeal
Genome, Archaeal
Geologic Sediments - microbiology
Hydrogen - metabolism
Life Sciences
Marine environment
Methane
Methane - metabolism
Methanogenesis
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Nitrogen fixation
Original
original-article
Oxidation
Oxidation-Reduction
Oxidoreductases
Physiology
title Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methanotrophic%20archaea%20possessing%20diverging%20methane-oxidizing%20and%20electron-transporting%20pathways&rft.jtitle=The%20ISME%20Journal&rft.au=Wang,%20Feng-Ping&rft.date=2014-05-01&rft.volume=8&rft.issue=5&rft.spage=1069&rft.epage=1078&rft.pages=1069-1078&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.212&rft_dat=%3Cproquest_pubme%3E1518618445%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518062545&rft_id=info:pmid/24335827&rfr_iscdi=true