Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation
Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical science 2014-02, Vol.21 (1), p.10-10, Article 10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | Journal of biomedical science |
container_volume | 21 |
creator | Tsubaki, Masanobu Komai, Makiko Itoh, Tatsuki Imano, Motohiro Sakamoto, Kotaro Shimaoka, Hirotaka Takeda, Tomoya Ogawa, Naoki Mashimo, Kenji Fujiwara, Daiichiro Mukai, Junji Sakaguchi, Katsuhiko Satou, Takao Nishida, Shozo |
description | Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7.
It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation.
This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis. |
doi_str_mv | 10.1186/1423-0127-21-10 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539614869</galeid><sourcerecordid>A539614869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</originalsourceid><addsrcrecordid>eNqNUk1v1DAUjBCIlsKZG7LEhUu6tpNs7AvSatUC6lKkAmfLsZ8Tl6y9tZ1K_Aj-M04_lhZxQJZlazwzep73iuI1wceEsOWC1LQqMaFtSUlJ8JPicI88fXA_KF7EeIkxaThrnxcHtK455hgfFr_ObQq-B1cq75K0zroedTbuBj9vJxNEZN1gO5vQxer8bFMi6TT6XK6_npbW6UmBRj4m8GqUMSHjw1Ym6x1KQ_BTP-QT7h1m2Bt0cnFGFvTGZ_UjIamSvb7RvCyeGTlGeHV3HhXfT0--rT-Wmy8fPq1Xm1I1rE2lZJLXddcYYowyWmqttGYc14oqjiVIwCBxV2vFKgLV0lSa0fxf3jQApqXVUfH-1nc3dVvQClwKchS7YLcy_BReWvH4xdlB9P5aVJwvCcPZ4N2dQfBXE8QktjYqGEfpwE9RkCZHTOqKNf9BJbjGVe5Npr79i3rpp-ByEjOLYcxbyv6wejmCsM74XKKaTcWqqXJ9NVvyzDr-BysvDVubew3GZvyRYHErUMHHGMDs4yBYzMMm5nES8zgJSjKYFW8eprjn309X9Rv8hM-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518009728</pqid></control><display><type>article</type><title>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Tsubaki, Masanobu ; Komai, Makiko ; Itoh, Tatsuki ; Imano, Motohiro ; Sakamoto, Kotaro ; Shimaoka, Hirotaka ; Takeda, Tomoya ; Ogawa, Naoki ; Mashimo, Kenji ; Fujiwara, Daiichiro ; Mukai, Junji ; Sakaguchi, Katsuhiko ; Satou, Takao ; Nishida, Shozo</creator><creatorcontrib>Tsubaki, Masanobu ; Komai, Makiko ; Itoh, Tatsuki ; Imano, Motohiro ; Sakamoto, Kotaro ; Shimaoka, Hirotaka ; Takeda, Tomoya ; Ogawa, Naoki ; Mashimo, Kenji ; Fujiwara, Daiichiro ; Mukai, Junji ; Sakaguchi, Katsuhiko ; Satou, Takao ; Nishida, Shozo</creatorcontrib><description>Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7.
It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation.
This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.</description><identifier>ISSN: 1423-0127</identifier><identifier>ISSN: 1021-7770</identifier><identifier>EISSN: 1423-0127</identifier><identifier>DOI: 10.1186/1423-0127-21-10</identifier><identifier>PMID: 24490900</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Alendronate - administration & dosage ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bone diseases ; Bone Diseases, Metabolic - drug therapy ; Bone Diseases, Metabolic - metabolism ; Bone Diseases, Metabolic - pathology ; Cancer ; Cellular signal transduction ; Diphosphonates - administration & dosage ; Diphosphonates - chemistry ; Humans ; Imidazoles - administration & dosage ; Kinases ; Ligands ; Macrophage colony stimulating factor ; Macrophage Colony-Stimulating Factor - metabolism ; Macrophages ; Macrophages - cytology ; Macrophages - drug effects ; MAP Kinase Signaling System - genetics ; Medical research ; Medicine, Experimental ; Mice ; Mitogens ; Nitrogen - chemistry ; Oncogene Protein v-akt - metabolism ; Osteoclasts - drug effects ; Osteoporosis ; Pharmacy ; Phosphates ; Phosphonates ; Polyisoprenyl Phosphates - biosynthesis ; Protein kinases ; Proteins ; RANK Ligand - antagonists & inhibitors ; Studies</subject><ispartof>Journal of biomedical science, 2014-02, Vol.21 (1), p.10-10, Article 10</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Tsubaki et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Copyright © 2014 Tsubaki et al.; licensee BioMed Central Ltd. 2014 Tsubaki et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</citedby><cites>FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24490900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsubaki, Masanobu</creatorcontrib><creatorcontrib>Komai, Makiko</creatorcontrib><creatorcontrib>Itoh, Tatsuki</creatorcontrib><creatorcontrib>Imano, Motohiro</creatorcontrib><creatorcontrib>Sakamoto, Kotaro</creatorcontrib><creatorcontrib>Shimaoka, Hirotaka</creatorcontrib><creatorcontrib>Takeda, Tomoya</creatorcontrib><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Mashimo, Kenji</creatorcontrib><creatorcontrib>Fujiwara, Daiichiro</creatorcontrib><creatorcontrib>Mukai, Junji</creatorcontrib><creatorcontrib>Sakaguchi, Katsuhiko</creatorcontrib><creatorcontrib>Satou, Takao</creatorcontrib><creatorcontrib>Nishida, Shozo</creatorcontrib><title>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</title><title>Journal of biomedical science</title><addtitle>J Biomed Sci</addtitle><description>Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7.
It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation.
This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.</description><subject>Alendronate - administration & dosage</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bone diseases</subject><subject>Bone Diseases, Metabolic - drug therapy</subject><subject>Bone Diseases, Metabolic - metabolism</subject><subject>Bone Diseases, Metabolic - pathology</subject><subject>Cancer</subject><subject>Cellular signal transduction</subject><subject>Diphosphonates - administration & dosage</subject><subject>Diphosphonates - chemistry</subject><subject>Humans</subject><subject>Imidazoles - administration & dosage</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Macrophage colony stimulating factor</subject><subject>Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mice</subject><subject>Mitogens</subject><subject>Nitrogen - chemistry</subject><subject>Oncogene Protein v-akt - metabolism</subject><subject>Osteoclasts - drug effects</subject><subject>Osteoporosis</subject><subject>Pharmacy</subject><subject>Phosphates</subject><subject>Phosphonates</subject><subject>Polyisoprenyl Phosphates - biosynthesis</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>RANK Ligand - antagonists & inhibitors</subject><subject>Studies</subject><issn>1423-0127</issn><issn>1021-7770</issn><issn>1423-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUk1v1DAUjBCIlsKZG7LEhUu6tpNs7AvSatUC6lKkAmfLsZ8Tl6y9tZ1K_Aj-M04_lhZxQJZlazwzep73iuI1wceEsOWC1LQqMaFtSUlJ8JPicI88fXA_KF7EeIkxaThrnxcHtK455hgfFr_ObQq-B1cq75K0zroedTbuBj9vJxNEZN1gO5vQxer8bFMi6TT6XK6_npbW6UmBRj4m8GqUMSHjw1Ym6x1KQ_BTP-QT7h1m2Bt0cnFGFvTGZ_UjIamSvb7RvCyeGTlGeHV3HhXfT0--rT-Wmy8fPq1Xm1I1rE2lZJLXddcYYowyWmqttGYc14oqjiVIwCBxV2vFKgLV0lSa0fxf3jQApqXVUfH-1nc3dVvQClwKchS7YLcy_BReWvH4xdlB9P5aVJwvCcPZ4N2dQfBXE8QktjYqGEfpwE9RkCZHTOqKNf9BJbjGVe5Npr79i3rpp-ByEjOLYcxbyv6wejmCsM74XKKaTcWqqXJ9NVvyzDr-BysvDVubew3GZvyRYHErUMHHGMDs4yBYzMMm5nES8zgJSjKYFW8eprjn309X9Rv8hM-5</recordid><startdate>20140203</startdate><enddate>20140203</enddate><creator>Tsubaki, Masanobu</creator><creator>Komai, Makiko</creator><creator>Itoh, Tatsuki</creator><creator>Imano, Motohiro</creator><creator>Sakamoto, Kotaro</creator><creator>Shimaoka, Hirotaka</creator><creator>Takeda, Tomoya</creator><creator>Ogawa, Naoki</creator><creator>Mashimo, Kenji</creator><creator>Fujiwara, Daiichiro</creator><creator>Mukai, Junji</creator><creator>Sakaguchi, Katsuhiko</creator><creator>Satou, Takao</creator><creator>Nishida, Shozo</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140203</creationdate><title>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</title><author>Tsubaki, Masanobu ; Komai, Makiko ; Itoh, Tatsuki ; Imano, Motohiro ; Sakamoto, Kotaro ; Shimaoka, Hirotaka ; Takeda, Tomoya ; Ogawa, Naoki ; Mashimo, Kenji ; Fujiwara, Daiichiro ; Mukai, Junji ; Sakaguchi, Katsuhiko ; Satou, Takao ; Nishida, Shozo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alendronate - administration & dosage</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bone diseases</topic><topic>Bone Diseases, Metabolic - drug therapy</topic><topic>Bone Diseases, Metabolic - metabolism</topic><topic>Bone Diseases, Metabolic - pathology</topic><topic>Cancer</topic><topic>Cellular signal transduction</topic><topic>Diphosphonates - administration & dosage</topic><topic>Diphosphonates - chemistry</topic><topic>Humans</topic><topic>Imidazoles - administration & dosage</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Macrophage colony stimulating factor</topic><topic>Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mice</topic><topic>Mitogens</topic><topic>Nitrogen - chemistry</topic><topic>Oncogene Protein v-akt - metabolism</topic><topic>Osteoclasts - drug effects</topic><topic>Osteoporosis</topic><topic>Pharmacy</topic><topic>Phosphates</topic><topic>Phosphonates</topic><topic>Polyisoprenyl Phosphates - biosynthesis</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>RANK Ligand - antagonists & inhibitors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsubaki, Masanobu</creatorcontrib><creatorcontrib>Komai, Makiko</creatorcontrib><creatorcontrib>Itoh, Tatsuki</creatorcontrib><creatorcontrib>Imano, Motohiro</creatorcontrib><creatorcontrib>Sakamoto, Kotaro</creatorcontrib><creatorcontrib>Shimaoka, Hirotaka</creatorcontrib><creatorcontrib>Takeda, Tomoya</creatorcontrib><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Mashimo, Kenji</creatorcontrib><creatorcontrib>Fujiwara, Daiichiro</creatorcontrib><creatorcontrib>Mukai, Junji</creatorcontrib><creatorcontrib>Sakaguchi, Katsuhiko</creatorcontrib><creatorcontrib>Satou, Takao</creatorcontrib><creatorcontrib>Nishida, Shozo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsubaki, Masanobu</au><au>Komai, Makiko</au><au>Itoh, Tatsuki</au><au>Imano, Motohiro</au><au>Sakamoto, Kotaro</au><au>Shimaoka, Hirotaka</au><au>Takeda, Tomoya</au><au>Ogawa, Naoki</au><au>Mashimo, Kenji</au><au>Fujiwara, Daiichiro</au><au>Mukai, Junji</au><au>Sakaguchi, Katsuhiko</au><au>Satou, Takao</au><au>Nishida, Shozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</atitle><jtitle>Journal of biomedical science</jtitle><addtitle>J Biomed Sci</addtitle><date>2014-02-03</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>10</spage><epage>10</epage><pages>10-10</pages><artnum>10</artnum><issn>1423-0127</issn><issn>1021-7770</issn><eissn>1423-0127</eissn><abstract>Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7.
It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation.
This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24490900</pmid><doi>10.1186/1423-0127-21-10</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1423-0127 |
ispartof | Journal of biomedical science, 2014-02, Vol.21 (1), p.10-10, Article 10 |
issn | 1423-0127 1021-7770 1423-0127 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996180 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central |
subjects | Alendronate - administration & dosage Animals Apoptosis Apoptosis - drug effects Bone diseases Bone Diseases, Metabolic - drug therapy Bone Diseases, Metabolic - metabolism Bone Diseases, Metabolic - pathology Cancer Cellular signal transduction Diphosphonates - administration & dosage Diphosphonates - chemistry Humans Imidazoles - administration & dosage Kinases Ligands Macrophage colony stimulating factor Macrophage Colony-Stimulating Factor - metabolism Macrophages Macrophages - cytology Macrophages - drug effects MAP Kinase Signaling System - genetics Medical research Medicine, Experimental Mice Mitogens Nitrogen - chemistry Oncogene Protein v-akt - metabolism Osteoclasts - drug effects Osteoporosis Pharmacy Phosphates Phosphonates Polyisoprenyl Phosphates - biosynthesis Protein kinases Proteins RANK Ligand - antagonists & inhibitors Studies |
title | Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-containing%20bisphosphonates%20inhibit%20RANKL-%20and%20M-CSF-induced%20osteoclast%20formation%20through%20the%20inhibition%20of%20ERK1/2%20and%20Akt%20activation&rft.jtitle=Journal%20of%20biomedical%20science&rft.au=Tsubaki,%20Masanobu&rft.date=2014-02-03&rft.volume=21&rft.issue=1&rft.spage=10&rft.epage=10&rft.pages=10-10&rft.artnum=10&rft.issn=1423-0127&rft.eissn=1423-0127&rft_id=info:doi/10.1186/1423-0127-21-10&rft_dat=%3Cgale_pubme%3EA539614869%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518009728&rft_id=info:pmid/24490900&rft_galeid=A539614869&rfr_iscdi=true |