Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation

Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical science 2014-02, Vol.21 (1), p.10-10, Article 10
Hauptverfasser: Tsubaki, Masanobu, Komai, Makiko, Itoh, Tatsuki, Imano, Motohiro, Sakamoto, Kotaro, Shimaoka, Hirotaka, Takeda, Tomoya, Ogawa, Naoki, Mashimo, Kenji, Fujiwara, Daiichiro, Mukai, Junji, Sakaguchi, Katsuhiko, Satou, Takao, Nishida, Shozo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 10
container_title Journal of biomedical science
container_volume 21
creator Tsubaki, Masanobu
Komai, Makiko
Itoh, Tatsuki
Imano, Motohiro
Sakamoto, Kotaro
Shimaoka, Hirotaka
Takeda, Tomoya
Ogawa, Naoki
Mashimo, Kenji
Fujiwara, Daiichiro
Mukai, Junji
Sakaguchi, Katsuhiko
Satou, Takao
Nishida, Shozo
description Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7. It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation. This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.
doi_str_mv 10.1186/1423-0127-21-10
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539614869</galeid><sourcerecordid>A539614869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</originalsourceid><addsrcrecordid>eNqNUk1v1DAUjBCIlsKZG7LEhUu6tpNs7AvSatUC6lKkAmfLsZ8Tl6y9tZ1K_Aj-M04_lhZxQJZlazwzep73iuI1wceEsOWC1LQqMaFtSUlJ8JPicI88fXA_KF7EeIkxaThrnxcHtK455hgfFr_ObQq-B1cq75K0zroedTbuBj9vJxNEZN1gO5vQxer8bFMi6TT6XK6_npbW6UmBRj4m8GqUMSHjw1Ym6x1KQ_BTP-QT7h1m2Bt0cnFGFvTGZ_UjIamSvb7RvCyeGTlGeHV3HhXfT0--rT-Wmy8fPq1Xm1I1rE2lZJLXddcYYowyWmqttGYc14oqjiVIwCBxV2vFKgLV0lSa0fxf3jQApqXVUfH-1nc3dVvQClwKchS7YLcy_BReWvH4xdlB9P5aVJwvCcPZ4N2dQfBXE8QktjYqGEfpwE9RkCZHTOqKNf9BJbjGVe5Npr79i3rpp-ByEjOLYcxbyv6wejmCsM74XKKaTcWqqXJ9NVvyzDr-BysvDVubew3GZvyRYHErUMHHGMDs4yBYzMMm5nES8zgJSjKYFW8eprjn309X9Rv8hM-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518009728</pqid></control><display><type>article</type><title>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Tsubaki, Masanobu ; Komai, Makiko ; Itoh, Tatsuki ; Imano, Motohiro ; Sakamoto, Kotaro ; Shimaoka, Hirotaka ; Takeda, Tomoya ; Ogawa, Naoki ; Mashimo, Kenji ; Fujiwara, Daiichiro ; Mukai, Junji ; Sakaguchi, Katsuhiko ; Satou, Takao ; Nishida, Shozo</creator><creatorcontrib>Tsubaki, Masanobu ; Komai, Makiko ; Itoh, Tatsuki ; Imano, Motohiro ; Sakamoto, Kotaro ; Shimaoka, Hirotaka ; Takeda, Tomoya ; Ogawa, Naoki ; Mashimo, Kenji ; Fujiwara, Daiichiro ; Mukai, Junji ; Sakaguchi, Katsuhiko ; Satou, Takao ; Nishida, Shozo</creatorcontrib><description>Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7. It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation. This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.</description><identifier>ISSN: 1423-0127</identifier><identifier>ISSN: 1021-7770</identifier><identifier>EISSN: 1423-0127</identifier><identifier>DOI: 10.1186/1423-0127-21-10</identifier><identifier>PMID: 24490900</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Alendronate - administration &amp; dosage ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bone diseases ; Bone Diseases, Metabolic - drug therapy ; Bone Diseases, Metabolic - metabolism ; Bone Diseases, Metabolic - pathology ; Cancer ; Cellular signal transduction ; Diphosphonates - administration &amp; dosage ; Diphosphonates - chemistry ; Humans ; Imidazoles - administration &amp; dosage ; Kinases ; Ligands ; Macrophage colony stimulating factor ; Macrophage Colony-Stimulating Factor - metabolism ; Macrophages ; Macrophages - cytology ; Macrophages - drug effects ; MAP Kinase Signaling System - genetics ; Medical research ; Medicine, Experimental ; Mice ; Mitogens ; Nitrogen - chemistry ; Oncogene Protein v-akt - metabolism ; Osteoclasts - drug effects ; Osteoporosis ; Pharmacy ; Phosphates ; Phosphonates ; Polyisoprenyl Phosphates - biosynthesis ; Protein kinases ; Proteins ; RANK Ligand - antagonists &amp; inhibitors ; Studies</subject><ispartof>Journal of biomedical science, 2014-02, Vol.21 (1), p.10-10, Article 10</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Tsubaki et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Copyright © 2014 Tsubaki et al.; licensee BioMed Central Ltd. 2014 Tsubaki et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</citedby><cites>FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24490900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsubaki, Masanobu</creatorcontrib><creatorcontrib>Komai, Makiko</creatorcontrib><creatorcontrib>Itoh, Tatsuki</creatorcontrib><creatorcontrib>Imano, Motohiro</creatorcontrib><creatorcontrib>Sakamoto, Kotaro</creatorcontrib><creatorcontrib>Shimaoka, Hirotaka</creatorcontrib><creatorcontrib>Takeda, Tomoya</creatorcontrib><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Mashimo, Kenji</creatorcontrib><creatorcontrib>Fujiwara, Daiichiro</creatorcontrib><creatorcontrib>Mukai, Junji</creatorcontrib><creatorcontrib>Sakaguchi, Katsuhiko</creatorcontrib><creatorcontrib>Satou, Takao</creatorcontrib><creatorcontrib>Nishida, Shozo</creatorcontrib><title>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</title><title>Journal of biomedical science</title><addtitle>J Biomed Sci</addtitle><description>Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7. It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation. This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.</description><subject>Alendronate - administration &amp; dosage</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bone diseases</subject><subject>Bone Diseases, Metabolic - drug therapy</subject><subject>Bone Diseases, Metabolic - metabolism</subject><subject>Bone Diseases, Metabolic - pathology</subject><subject>Cancer</subject><subject>Cellular signal transduction</subject><subject>Diphosphonates - administration &amp; dosage</subject><subject>Diphosphonates - chemistry</subject><subject>Humans</subject><subject>Imidazoles - administration &amp; dosage</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Macrophage colony stimulating factor</subject><subject>Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Mice</subject><subject>Mitogens</subject><subject>Nitrogen - chemistry</subject><subject>Oncogene Protein v-akt - metabolism</subject><subject>Osteoclasts - drug effects</subject><subject>Osteoporosis</subject><subject>Pharmacy</subject><subject>Phosphates</subject><subject>Phosphonates</subject><subject>Polyisoprenyl Phosphates - biosynthesis</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>RANK Ligand - antagonists &amp; inhibitors</subject><subject>Studies</subject><issn>1423-0127</issn><issn>1021-7770</issn><issn>1423-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUk1v1DAUjBCIlsKZG7LEhUu6tpNs7AvSatUC6lKkAmfLsZ8Tl6y9tZ1K_Aj-M04_lhZxQJZlazwzep73iuI1wceEsOWC1LQqMaFtSUlJ8JPicI88fXA_KF7EeIkxaThrnxcHtK455hgfFr_ObQq-B1cq75K0zroedTbuBj9vJxNEZN1gO5vQxer8bFMi6TT6XK6_npbW6UmBRj4m8GqUMSHjw1Ym6x1KQ_BTP-QT7h1m2Bt0cnFGFvTGZ_UjIamSvb7RvCyeGTlGeHV3HhXfT0--rT-Wmy8fPq1Xm1I1rE2lZJLXddcYYowyWmqttGYc14oqjiVIwCBxV2vFKgLV0lSa0fxf3jQApqXVUfH-1nc3dVvQClwKchS7YLcy_BReWvH4xdlB9P5aVJwvCcPZ4N2dQfBXE8QktjYqGEfpwE9RkCZHTOqKNf9BJbjGVe5Npr79i3rpp-ByEjOLYcxbyv6wejmCsM74XKKaTcWqqXJ9NVvyzDr-BysvDVubew3GZvyRYHErUMHHGMDs4yBYzMMm5nES8zgJSjKYFW8eprjn309X9Rv8hM-5</recordid><startdate>20140203</startdate><enddate>20140203</enddate><creator>Tsubaki, Masanobu</creator><creator>Komai, Makiko</creator><creator>Itoh, Tatsuki</creator><creator>Imano, Motohiro</creator><creator>Sakamoto, Kotaro</creator><creator>Shimaoka, Hirotaka</creator><creator>Takeda, Tomoya</creator><creator>Ogawa, Naoki</creator><creator>Mashimo, Kenji</creator><creator>Fujiwara, Daiichiro</creator><creator>Mukai, Junji</creator><creator>Sakaguchi, Katsuhiko</creator><creator>Satou, Takao</creator><creator>Nishida, Shozo</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140203</creationdate><title>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</title><author>Tsubaki, Masanobu ; Komai, Makiko ; Itoh, Tatsuki ; Imano, Motohiro ; Sakamoto, Kotaro ; Shimaoka, Hirotaka ; Takeda, Tomoya ; Ogawa, Naoki ; Mashimo, Kenji ; Fujiwara, Daiichiro ; Mukai, Junji ; Sakaguchi, Katsuhiko ; Satou, Takao ; Nishida, Shozo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-a8a944b5f1ffcfdaddcdd8904c2c90aeae0ea0b4dc831e36f3d82090955eef723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alendronate - administration &amp; dosage</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bone diseases</topic><topic>Bone Diseases, Metabolic - drug therapy</topic><topic>Bone Diseases, Metabolic - metabolism</topic><topic>Bone Diseases, Metabolic - pathology</topic><topic>Cancer</topic><topic>Cellular signal transduction</topic><topic>Diphosphonates - administration &amp; dosage</topic><topic>Diphosphonates - chemistry</topic><topic>Humans</topic><topic>Imidazoles - administration &amp; dosage</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Macrophage colony stimulating factor</topic><topic>Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Mice</topic><topic>Mitogens</topic><topic>Nitrogen - chemistry</topic><topic>Oncogene Protein v-akt - metabolism</topic><topic>Osteoclasts - drug effects</topic><topic>Osteoporosis</topic><topic>Pharmacy</topic><topic>Phosphates</topic><topic>Phosphonates</topic><topic>Polyisoprenyl Phosphates - biosynthesis</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>RANK Ligand - antagonists &amp; inhibitors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsubaki, Masanobu</creatorcontrib><creatorcontrib>Komai, Makiko</creatorcontrib><creatorcontrib>Itoh, Tatsuki</creatorcontrib><creatorcontrib>Imano, Motohiro</creatorcontrib><creatorcontrib>Sakamoto, Kotaro</creatorcontrib><creatorcontrib>Shimaoka, Hirotaka</creatorcontrib><creatorcontrib>Takeda, Tomoya</creatorcontrib><creatorcontrib>Ogawa, Naoki</creatorcontrib><creatorcontrib>Mashimo, Kenji</creatorcontrib><creatorcontrib>Fujiwara, Daiichiro</creatorcontrib><creatorcontrib>Mukai, Junji</creatorcontrib><creatorcontrib>Sakaguchi, Katsuhiko</creatorcontrib><creatorcontrib>Satou, Takao</creatorcontrib><creatorcontrib>Nishida, Shozo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsubaki, Masanobu</au><au>Komai, Makiko</au><au>Itoh, Tatsuki</au><au>Imano, Motohiro</au><au>Sakamoto, Kotaro</au><au>Shimaoka, Hirotaka</au><au>Takeda, Tomoya</au><au>Ogawa, Naoki</au><au>Mashimo, Kenji</au><au>Fujiwara, Daiichiro</au><au>Mukai, Junji</au><au>Sakaguchi, Katsuhiko</au><au>Satou, Takao</au><au>Nishida, Shozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation</atitle><jtitle>Journal of biomedical science</jtitle><addtitle>J Biomed Sci</addtitle><date>2014-02-03</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>10</spage><epage>10</epage><pages>10-10</pages><artnum>10</artnum><issn>1423-0127</issn><issn>1021-7770</issn><eissn>1423-0127</eissn><abstract>Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7. It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation. This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24490900</pmid><doi>10.1186/1423-0127-21-10</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1423-0127
ispartof Journal of biomedical science, 2014-02, Vol.21 (1), p.10-10, Article 10
issn 1423-0127
1021-7770
1423-0127
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996180
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central
subjects Alendronate - administration & dosage
Animals
Apoptosis
Apoptosis - drug effects
Bone diseases
Bone Diseases, Metabolic - drug therapy
Bone Diseases, Metabolic - metabolism
Bone Diseases, Metabolic - pathology
Cancer
Cellular signal transduction
Diphosphonates - administration & dosage
Diphosphonates - chemistry
Humans
Imidazoles - administration & dosage
Kinases
Ligands
Macrophage colony stimulating factor
Macrophage Colony-Stimulating Factor - metabolism
Macrophages
Macrophages - cytology
Macrophages - drug effects
MAP Kinase Signaling System - genetics
Medical research
Medicine, Experimental
Mice
Mitogens
Nitrogen - chemistry
Oncogene Protein v-akt - metabolism
Osteoclasts - drug effects
Osteoporosis
Pharmacy
Phosphates
Phosphonates
Polyisoprenyl Phosphates - biosynthesis
Protein kinases
Proteins
RANK Ligand - antagonists & inhibitors
Studies
title Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-containing%20bisphosphonates%20inhibit%20RANKL-%20and%20M-CSF-induced%20osteoclast%20formation%20through%20the%20inhibition%20of%20ERK1/2%20and%20Akt%20activation&rft.jtitle=Journal%20of%20biomedical%20science&rft.au=Tsubaki,%20Masanobu&rft.date=2014-02-03&rft.volume=21&rft.issue=1&rft.spage=10&rft.epage=10&rft.pages=10-10&rft.artnum=10&rft.issn=1423-0127&rft.eissn=1423-0127&rft_id=info:doi/10.1186/1423-0127-21-10&rft_dat=%3Cgale_pubme%3EA539614869%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518009728&rft_id=info:pmid/24490900&rft_galeid=A539614869&rfr_iscdi=true