Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton

Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroengineering and rehabilitation 2014-03, Vol.11 (1), p.27-27
Hauptverfasser: del-Ama, Antonio J, Gil-Agudo, Angel, Pons, José L, Moreno, Juan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 27
container_title Journal of neuroengineering and rehabilitation
container_volume 11
creator del-Ama, Antonio J
Gil-Agudo, Angel
Pons, José L
Moreno, Juan C
description Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.
doi_str_mv 10.1186/1743-0003-11-27
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3995973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539680931</galeid><sourcerecordid>A539680931</sourcerecordid><originalsourceid>FETCH-LOGICAL-b618t-8a5fd3ecaf6e10a49589026f46a5b2e3db59f390f7ce3846d95f577ab9d415573</originalsourceid><addsrcrecordid>eNqNks9rFTEQx4MotlbP3mTBi5dtk82P3VyEWlorFAR_nEOyO3mN7u48k7zi--_N8uqjDypIDhlmPvnynckQ8prRU8Y6dcZawWtKKa8Zq5v2CTneZ54-iI_Ii5R-lEBQKZ6To0ZILThtjsmX662LYaiuLr_WER3mqkdcQ7Q53EGJ5xxxrNBXdnKb0WaM22plQ64i3FoXxpALiXMFvzH9hBEyzi_JM2_HBK_u7xPy_ery28V1ffP546eL85vaKdblurPSDxx66xUwaoWWnaaN8kJZ6Rrgg5Pac0192wPvhBq09LJtrdODYFK2_IS83-muN26CoYfi1Y5mHcNk49agDeawModbs8I7w7WWuuVF4MNOwAX8h8BhpcfJLDM1y0wNY6ZZXLy7dxHx1wZSNlNIPYyjnQE3yTDZUN4qQcV_oLTTpTetCvp2h67sCCbMHouBfsHNueRadVRzVqjTR6hyBphC-TvwoeQPHpztHvQRU4rg980yapaFeqS9Nw-HvOf_bhD_A683xj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508941596</pqid></control><display><type>article</type><title>Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>del-Ama, Antonio J ; Gil-Agudo, Angel ; Pons, José L ; Moreno, Juan C</creator><creatorcontrib>del-Ama, Antonio J ; Gil-Agudo, Angel ; Pons, José L ; Moreno, Juan C</creatorcontrib><description>Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.</description><identifier>ISSN: 1743-0003</identifier><identifier>EISSN: 1743-0003</identifier><identifier>DOI: 10.1186/1743-0003-11-27</identifier><identifier>PMID: 24594302</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Activities of daily living ; Adult ; Care and treatment ; Diagnosis ; Electric Stimulation Therapy - instrumentation ; Electric Stimulation Therapy - methods ; Fatigue ; Gait Disorders, Neurologic - etiology ; Gait Disorders, Neurologic - rehabilitation ; Humans ; Physiological aspects ; Robotics - instrumentation ; Robotics - methods ; Spinal Cord Injuries - complications ; Spinal Cord Injuries - rehabilitation ; Strategic planning (Business)</subject><ispartof>Journal of neuroengineering and rehabilitation, 2014-03, Vol.11 (1), p.27-27</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>Copyright © 2014 del-Ama et al.; licensee BioMed Central Ltd. 2014 del-Ama et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b618t-8a5fd3ecaf6e10a49589026f46a5b2e3db59f390f7ce3846d95f577ab9d415573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995973/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995973/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24594302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>del-Ama, Antonio J</creatorcontrib><creatorcontrib>Gil-Agudo, Angel</creatorcontrib><creatorcontrib>Pons, José L</creatorcontrib><creatorcontrib>Moreno, Juan C</creatorcontrib><title>Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton</title><title>Journal of neuroengineering and rehabilitation</title><addtitle>J Neuroeng Rehabil</addtitle><description>Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.</description><subject>Activities of daily living</subject><subject>Adult</subject><subject>Care and treatment</subject><subject>Diagnosis</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Fatigue</subject><subject>Gait Disorders, Neurologic - etiology</subject><subject>Gait Disorders, Neurologic - rehabilitation</subject><subject>Humans</subject><subject>Physiological aspects</subject><subject>Robotics - instrumentation</subject><subject>Robotics - methods</subject><subject>Spinal Cord Injuries - complications</subject><subject>Spinal Cord Injuries - rehabilitation</subject><subject>Strategic planning (Business)</subject><issn>1743-0003</issn><issn>1743-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFTEQx4MotlbP3mTBi5dtk82P3VyEWlorFAR_nEOyO3mN7u48k7zi--_N8uqjDypIDhlmPvnynckQ8prRU8Y6dcZawWtKKa8Zq5v2CTneZ54-iI_Ii5R-lEBQKZ6To0ZILThtjsmX662LYaiuLr_WER3mqkdcQ7Q53EGJ5xxxrNBXdnKb0WaM22plQ64i3FoXxpALiXMFvzH9hBEyzi_JM2_HBK_u7xPy_ery28V1ffP546eL85vaKdblurPSDxx66xUwaoWWnaaN8kJZ6Rrgg5Pac0192wPvhBq09LJtrdODYFK2_IS83-muN26CoYfi1Y5mHcNk49agDeawModbs8I7w7WWuuVF4MNOwAX8h8BhpcfJLDM1y0wNY6ZZXLy7dxHx1wZSNlNIPYyjnQE3yTDZUN4qQcV_oLTTpTetCvp2h67sCCbMHouBfsHNueRadVRzVqjTR6hyBphC-TvwoeQPHpztHvQRU4rg980yapaFeqS9Nw-HvOf_bhD_A683xj8</recordid><startdate>20140304</startdate><enddate>20140304</enddate><creator>del-Ama, Antonio J</creator><creator>Gil-Agudo, Angel</creator><creator>Pons, José L</creator><creator>Moreno, Juan C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140304</creationdate><title>Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton</title><author>del-Ama, Antonio J ; Gil-Agudo, Angel ; Pons, José L ; Moreno, Juan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b618t-8a5fd3ecaf6e10a49589026f46a5b2e3db59f390f7ce3846d95f577ab9d415573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activities of daily living</topic><topic>Adult</topic><topic>Care and treatment</topic><topic>Diagnosis</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Fatigue</topic><topic>Gait Disorders, Neurologic - etiology</topic><topic>Gait Disorders, Neurologic - rehabilitation</topic><topic>Humans</topic><topic>Physiological aspects</topic><topic>Robotics - instrumentation</topic><topic>Robotics - methods</topic><topic>Spinal Cord Injuries - complications</topic><topic>Spinal Cord Injuries - rehabilitation</topic><topic>Strategic planning (Business)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>del-Ama, Antonio J</creatorcontrib><creatorcontrib>Gil-Agudo, Angel</creatorcontrib><creatorcontrib>Pons, José L</creatorcontrib><creatorcontrib>Moreno, Juan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroengineering and rehabilitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del-Ama, Antonio J</au><au>Gil-Agudo, Angel</au><au>Pons, José L</au><au>Moreno, Juan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton</atitle><jtitle>Journal of neuroengineering and rehabilitation</jtitle><addtitle>J Neuroeng Rehabil</addtitle><date>2014-03-04</date><risdate>2014</risdate><volume>11</volume><issue>1</issue><spage>27</spage><epage>27</epage><pages>27-27</pages><issn>1743-0003</issn><eissn>1743-0003</eissn><abstract>Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24594302</pmid><doi>10.1186/1743-0003-11-27</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1743-0003
ispartof Journal of neuroengineering and rehabilitation, 2014-03, Vol.11 (1), p.27-27
issn 1743-0003
1743-0003
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3995973
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Activities of daily living
Adult
Care and treatment
Diagnosis
Electric Stimulation Therapy - instrumentation
Electric Stimulation Therapy - methods
Fatigue
Gait Disorders, Neurologic - etiology
Gait Disorders, Neurologic - rehabilitation
Humans
Physiological aspects
Robotics - instrumentation
Robotics - methods
Spinal Cord Injuries - complications
Spinal Cord Injuries - rehabilitation
Strategic planning (Business)
title Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20FES-robot%20cooperative%20control%20of%20ambulatory%20gait%20rehabilitation%20exoskeleton&rft.jtitle=Journal%20of%20neuroengineering%20and%20rehabilitation&rft.au=del-Ama,%20Antonio%20J&rft.date=2014-03-04&rft.volume=11&rft.issue=1&rft.spage=27&rft.epage=27&rft.pages=27-27&rft.issn=1743-0003&rft.eissn=1743-0003&rft_id=info:doi/10.1186/1743-0003-11-27&rft_dat=%3Cgale_pubme%3EA539680931%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508941596&rft_id=info:pmid/24594302&rft_galeid=A539680931&rfr_iscdi=true