Growth factor transgenes interactively regulate articular chondrocytes

Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2013-04, Vol.114 (4), p.908-919
Hauptverfasser: Shi, Shuiliang, Mercer, Scott, Eckert, George J., Trippel, Stephen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 919
container_issue 4
container_start_page 908
container_title Journal of cellular biochemistry
container_volume 114
creator Shi, Shuiliang
Mercer, Scott
Eckert, George J.
Trippel, Stephen B.
description Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jcb.24430
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3994886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895068401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EomnhwB9AK3GBw7bjr_X6gkQjkhZVwAHE0fI6s4nDZt3au23z73FJGxUkxMnW-JlHM34JeUXhmAKwk7VrjpkQHJ6QCQWtSlEJ8ZRMQHEoGafsgBymtAYArTl7Tg4Yz1SuT8hsHsPNsCpa64YQiyHaPi2xx1T4fsCYq_4au20RcTl2dsDCxsG7fI2FW4V-EYPbDphekGet7RK-vD-PyPfZx2_Ts_Liy_x8-uGidJIKKG2rGTqmBEMq0FWWaa5dLRsBKBcgQTatEkAdBeYWUItGS3BUKi0sVJLxI_J-570cmw0uHPZ54s5cRr-xcWuC9ebPl96vzDJcG661qOsqC97eC2K4GjENZuOTw66zPYYxGSq4Zrzmdf1_lGlaQd6LZ_TNX-g6jLHPP5GpulaSMaoz9W5HuRhSitju56Zg7oI0OUjzO8jMvn686J58SC4DJzvgxne4_bfJfJqePijLXYdPA97uO2z8aSrFlTQ_Ps8N5ZqfztRXM-O_AFCgtdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288752219</pqid></control><display><type>article</type><title>Growth factor transgenes interactively regulate articular chondrocytes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Shuiliang ; Mercer, Scott ; Eckert, George J. ; Trippel, Stephen B.</creator><creatorcontrib>Shi, Shuiliang ; Mercer, Scott ; Eckert, George J. ; Trippel, Stephen B.</creatorcontrib><description>Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.24430</identifier><identifier>PMID: 23097312</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; ARTICULAR CHONDROCYTES ; Bone growth ; Bone Morphogenetic Protein 2 - genetics ; Bone Morphogenetic Protein 2 - metabolism ; Bone Morphogenetic Protein 7 - genetics ; Bone Morphogenetic Protein 7 - metabolism ; Cartilage, Articular - cytology ; Cartilage, Articular - metabolism ; Cattle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Collagen - biosynthesis ; DNA ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Gene Expression Regulation ; GENE THERAPY ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; GROWTH FACTORS ; Humans ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; MATRIX ; Proteoglycans - metabolism ; Time Factors ; Transfection - methods ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Transgenes</subject><ispartof>Journal of cellular biochemistry, 2013-04, Vol.114 (4), p.908-919</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</citedby><cites>FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.24430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.24430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23097312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Shuiliang</creatorcontrib><creatorcontrib>Mercer, Scott</creatorcontrib><creatorcontrib>Eckert, George J.</creatorcontrib><creatorcontrib>Trippel, Stephen B.</creatorcontrib><title>Growth factor transgenes interactively regulate articular chondrocytes</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>ARTICULAR CHONDROCYTES</subject><subject>Bone growth</subject><subject>Bone Morphogenetic Protein 2 - genetics</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Bone Morphogenetic Protein 7 - genetics</subject><subject>Bone Morphogenetic Protein 7 - metabolism</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cattle</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Collagen - biosynthesis</subject><subject>DNA</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gene Expression Regulation</subject><subject>GENE THERAPY</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>GROWTH FACTORS</subject><subject>Humans</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>MATRIX</subject><subject>Proteoglycans - metabolism</subject><subject>Time Factors</subject><subject>Transfection - methods</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transgenes</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EomnhwB9AK3GBw7bjr_X6gkQjkhZVwAHE0fI6s4nDZt3au23z73FJGxUkxMnW-JlHM34JeUXhmAKwk7VrjpkQHJ6QCQWtSlEJ8ZRMQHEoGafsgBymtAYArTl7Tg4Yz1SuT8hsHsPNsCpa64YQiyHaPi2xx1T4fsCYq_4au20RcTl2dsDCxsG7fI2FW4V-EYPbDphekGet7RK-vD-PyPfZx2_Ts_Liy_x8-uGidJIKKG2rGTqmBEMq0FWWaa5dLRsBKBcgQTatEkAdBeYWUItGS3BUKi0sVJLxI_J-570cmw0uHPZ54s5cRr-xcWuC9ebPl96vzDJcG661qOsqC97eC2K4GjENZuOTw66zPYYxGSq4Zrzmdf1_lGlaQd6LZ_TNX-g6jLHPP5GpulaSMaoz9W5HuRhSitju56Zg7oI0OUjzO8jMvn686J58SC4DJzvgxne4_bfJfJqePijLXYdPA97uO2z8aSrFlTQ_Ps8N5ZqfztRXM-O_AFCgtdA</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Shi, Shuiliang</creator><creator>Mercer, Scott</creator><creator>Eckert, George J.</creator><creator>Trippel, Stephen B.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201304</creationdate><title>Growth factor transgenes interactively regulate articular chondrocytes</title><author>Shi, Shuiliang ; Mercer, Scott ; Eckert, George J. ; Trippel, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>ARTICULAR CHONDROCYTES</topic><topic>Bone growth</topic><topic>Bone Morphogenetic Protein 2 - genetics</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Bone Morphogenetic Protein 7 - genetics</topic><topic>Bone Morphogenetic Protein 7 - metabolism</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cattle</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Collagen - biosynthesis</topic><topic>DNA</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gene Expression Regulation</topic><topic>GENE THERAPY</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>GROWTH FACTORS</topic><topic>Humans</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>MATRIX</topic><topic>Proteoglycans - metabolism</topic><topic>Time Factors</topic><topic>Transfection - methods</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Shuiliang</creatorcontrib><creatorcontrib>Mercer, Scott</creatorcontrib><creatorcontrib>Eckert, George J.</creatorcontrib><creatorcontrib>Trippel, Stephen B.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Shuiliang</au><au>Mercer, Scott</au><au>Eckert, George J.</au><au>Trippel, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth factor transgenes interactively regulate articular chondrocytes</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2013-04</date><risdate>2013</risdate><volume>114</volume><issue>4</issue><spage>908</spage><epage>919</epage><pages>908-919</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23097312</pmid><doi>10.1002/jcb.24430</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2013-04, Vol.114 (4), p.908-919
issn 0730-2312
1097-4644
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3994886
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
ARTICULAR CHONDROCYTES
Bone growth
Bone Morphogenetic Protein 2 - genetics
Bone Morphogenetic Protein 2 - metabolism
Bone Morphogenetic Protein 7 - genetics
Bone Morphogenetic Protein 7 - metabolism
Cartilage, Articular - cytology
Cartilage, Articular - metabolism
Cattle
Cell Differentiation
Cell Proliferation
Cells, Cultured
Chondrocytes - cytology
Chondrocytes - metabolism
Collagen - biosynthesis
DNA
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
Gene Expression Regulation
GENE THERAPY
Genetic Vectors - genetics
Genetic Vectors - metabolism
GROWTH FACTORS
Humans
Insulin-Like Growth Factor I - genetics
Insulin-Like Growth Factor I - metabolism
Intercellular Signaling Peptides and Proteins - genetics
Intercellular Signaling Peptides and Proteins - metabolism
MATRIX
Proteoglycans - metabolism
Time Factors
Transfection - methods
Transforming Growth Factor beta1 - genetics
Transforming Growth Factor beta1 - metabolism
Transgenes
title Growth factor transgenes interactively regulate articular chondrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20factor%20transgenes%20interactively%20regulate%20articular%20chondrocytes&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Shi,%20Shuiliang&rft.date=2013-04&rft.volume=114&rft.issue=4&rft.spage=908&rft.epage=919&rft.pages=908-919&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.24430&rft_dat=%3Cproquest_pubme%3E2895068401%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288752219&rft_id=info:pmid/23097312&rfr_iscdi=true