Growth factor transgenes interactively regulate articular chondrocytes
Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2013-04, Vol.114 (4), p.908-919 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 919 |
---|---|
container_issue | 4 |
container_start_page | 908 |
container_title | Journal of cellular biochemistry |
container_volume | 114 |
creator | Shi, Shuiliang Mercer, Scott Eckert, George J. Trippel, Stephen B. |
description | Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jcb.24430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3994886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895068401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EomnhwB9AK3GBw7bjr_X6gkQjkhZVwAHE0fI6s4nDZt3au23z73FJGxUkxMnW-JlHM34JeUXhmAKwk7VrjpkQHJ6QCQWtSlEJ8ZRMQHEoGafsgBymtAYArTl7Tg4Yz1SuT8hsHsPNsCpa64YQiyHaPi2xx1T4fsCYq_4au20RcTl2dsDCxsG7fI2FW4V-EYPbDphekGet7RK-vD-PyPfZx2_Ts_Liy_x8-uGidJIKKG2rGTqmBEMq0FWWaa5dLRsBKBcgQTatEkAdBeYWUItGS3BUKi0sVJLxI_J-570cmw0uHPZ54s5cRr-xcWuC9ebPl96vzDJcG661qOsqC97eC2K4GjENZuOTw66zPYYxGSq4Zrzmdf1_lGlaQd6LZ_TNX-g6jLHPP5GpulaSMaoz9W5HuRhSitju56Zg7oI0OUjzO8jMvn686J58SC4DJzvgxne4_bfJfJqePijLXYdPA97uO2z8aSrFlTQ_Ps8N5ZqfztRXM-O_AFCgtdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288752219</pqid></control><display><type>article</type><title>Growth factor transgenes interactively regulate articular chondrocytes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Shuiliang ; Mercer, Scott ; Eckert, George J. ; Trippel, Stephen B.</creator><creatorcontrib>Shi, Shuiliang ; Mercer, Scott ; Eckert, George J. ; Trippel, Stephen B.</creatorcontrib><description>Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.24430</identifier><identifier>PMID: 23097312</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; ARTICULAR CHONDROCYTES ; Bone growth ; Bone Morphogenetic Protein 2 - genetics ; Bone Morphogenetic Protein 2 - metabolism ; Bone Morphogenetic Protein 7 - genetics ; Bone Morphogenetic Protein 7 - metabolism ; Cartilage, Articular - cytology ; Cartilage, Articular - metabolism ; Cattle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Collagen - biosynthesis ; DNA ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Gene Expression Regulation ; GENE THERAPY ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; GROWTH FACTORS ; Humans ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; MATRIX ; Proteoglycans - metabolism ; Time Factors ; Transfection - methods ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Transgenes</subject><ispartof>Journal of cellular biochemistry, 2013-04, Vol.114 (4), p.908-919</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</citedby><cites>FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.24430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.24430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23097312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Shuiliang</creatorcontrib><creatorcontrib>Mercer, Scott</creatorcontrib><creatorcontrib>Eckert, George J.</creatorcontrib><creatorcontrib>Trippel, Stephen B.</creatorcontrib><title>Growth factor transgenes interactively regulate articular chondrocytes</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>ARTICULAR CHONDROCYTES</subject><subject>Bone growth</subject><subject>Bone Morphogenetic Protein 2 - genetics</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Bone Morphogenetic Protein 7 - genetics</subject><subject>Bone Morphogenetic Protein 7 - metabolism</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cattle</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Collagen - biosynthesis</subject><subject>DNA</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Gene Expression Regulation</subject><subject>GENE THERAPY</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>GROWTH FACTORS</subject><subject>Humans</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>MATRIX</subject><subject>Proteoglycans - metabolism</subject><subject>Time Factors</subject><subject>Transfection - methods</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transgenes</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EomnhwB9AK3GBw7bjr_X6gkQjkhZVwAHE0fI6s4nDZt3au23z73FJGxUkxMnW-JlHM34JeUXhmAKwk7VrjpkQHJ6QCQWtSlEJ8ZRMQHEoGafsgBymtAYArTl7Tg4Yz1SuT8hsHsPNsCpa64YQiyHaPi2xx1T4fsCYq_4au20RcTl2dsDCxsG7fI2FW4V-EYPbDphekGet7RK-vD-PyPfZx2_Ts_Liy_x8-uGidJIKKG2rGTqmBEMq0FWWaa5dLRsBKBcgQTatEkAdBeYWUItGS3BUKi0sVJLxI_J-570cmw0uHPZ54s5cRr-xcWuC9ebPl96vzDJcG661qOsqC97eC2K4GjENZuOTw66zPYYxGSq4Zrzmdf1_lGlaQd6LZ_TNX-g6jLHPP5GpulaSMaoz9W5HuRhSitju56Zg7oI0OUjzO8jMvn686J58SC4DJzvgxne4_bfJfJqePijLXYdPA97uO2z8aSrFlTQ_Ps8N5ZqfztRXM-O_AFCgtdA</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Shi, Shuiliang</creator><creator>Mercer, Scott</creator><creator>Eckert, George J.</creator><creator>Trippel, Stephen B.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201304</creationdate><title>Growth factor transgenes interactively regulate articular chondrocytes</title><author>Shi, Shuiliang ; Mercer, Scott ; Eckert, George J. ; Trippel, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5140-af92ec2742e14ec6a2939c85b40e5d0505bf7401c102cd084b950c15794a06523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>ARTICULAR CHONDROCYTES</topic><topic>Bone growth</topic><topic>Bone Morphogenetic Protein 2 - genetics</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Bone Morphogenetic Protein 7 - genetics</topic><topic>Bone Morphogenetic Protein 7 - metabolism</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cattle</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Collagen - biosynthesis</topic><topic>DNA</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Gene Expression Regulation</topic><topic>GENE THERAPY</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>GROWTH FACTORS</topic><topic>Humans</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>MATRIX</topic><topic>Proteoglycans - metabolism</topic><topic>Time Factors</topic><topic>Transfection - methods</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Shuiliang</creatorcontrib><creatorcontrib>Mercer, Scott</creatorcontrib><creatorcontrib>Eckert, George J.</creatorcontrib><creatorcontrib>Trippel, Stephen B.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Shuiliang</au><au>Mercer, Scott</au><au>Eckert, George J.</au><au>Trippel, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth factor transgenes interactively regulate articular chondrocytes</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2013-04</date><risdate>2013</risdate><volume>114</volume><issue>4</issue><spage>908</spage><epage>919</epage><pages>908-919</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23097312</pmid><doi>10.1002/jcb.24430</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2013-04, Vol.114 (4), p.908-919 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3994886 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals ARTICULAR CHONDROCYTES Bone growth Bone Morphogenetic Protein 2 - genetics Bone Morphogenetic Protein 2 - metabolism Bone Morphogenetic Protein 7 - genetics Bone Morphogenetic Protein 7 - metabolism Cartilage, Articular - cytology Cartilage, Articular - metabolism Cattle Cell Differentiation Cell Proliferation Cells, Cultured Chondrocytes - cytology Chondrocytes - metabolism Collagen - biosynthesis DNA Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Gene Expression Regulation GENE THERAPY Genetic Vectors - genetics Genetic Vectors - metabolism GROWTH FACTORS Humans Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - metabolism Intercellular Signaling Peptides and Proteins - genetics Intercellular Signaling Peptides and Proteins - metabolism MATRIX Proteoglycans - metabolism Time Factors Transfection - methods Transforming Growth Factor beta1 - genetics Transforming Growth Factor beta1 - metabolism Transgenes |
title | Growth factor transgenes interactively regulate articular chondrocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20factor%20transgenes%20interactively%20regulate%20articular%20chondrocytes&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Shi,%20Shuiliang&rft.date=2013-04&rft.volume=114&rft.issue=4&rft.spage=908&rft.epage=919&rft.pages=908-919&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.24430&rft_dat=%3Cproquest_pubme%3E2895068401%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288752219&rft_id=info:pmid/23097312&rfr_iscdi=true |