Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct

Abstract Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2014-06, Vol.47 (9), p.2080-2087
Hauptverfasser: Miller, K.S, Lee, Y.U, Naito, Y, Breuer, C.K, Humphrey, J.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2087
container_issue 9
container_start_page 2080
container_title Journal of biomechanics
container_volume 47
creator Miller, K.S
Lee, Y.U
Naito, Y
Breuer, C.K
Humphrey, J.D
description Abstract Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enabling time-efficient parametric studies that can reduce the experimental search space. In this paper, we present a first generation computational model for describing the in vivo development of a tissue engineered vein from an implanted polymeric scaffold. The model was motivated by our recent data on the evolution of mechanical properties and microstructural composition over 24 weeks in a mouse inferior vena cava interposition graft. It is shown that these data can be captured well by including both an early inflammatory-mediated and a subsequent mechano-mediated production of extracellular matrix. There remains a pressing need, however, for more data to inform the development of next generation models, particularly the precise transition from the inflammatory to the mechanobiological dominated production of matrix having functional capability.
doi_str_mv 10.1016/j.jbiomech.2013.10.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3994188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929013004636</els_id><sourcerecordid>3321042841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c690t-1b44a5acd0bdf9fdcae5f0071371c1b44b4555349b0a9b73f1e053f1b99a67d83</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwFypLXLjsMo7tJL5UoBVfUiUOwNlynEnXS2IH24m0_x6HbQv0Ahdbmnn8embeKYpLClsKtHp92B5a60c0-20JlOXgFkA-Ks5pU7NNyRp4XJwDlHQjSwlnxbMYDwBQ81o-Lc5KXlLgNT8vpp0fpznpZL3TAxl9hwPxPUl7JNaRxS6edLjg4KcRXVpTmiQb44wE3Y11iAE7smCG--BHoh2x4zRol3J48sNxxGANMd7FFGaTnhdPej1EfHF7XxTf3r_7uvu4uf784dPu7fXGVBLShraca6FNB23Xy74zGkWf66espmZNtlwIwbhsQcu2Zj1FEPlspdRV3TXsorg66U5zO2JncvFBD2oKdtThqLy26u-Ms3t14xfFpOS0WQVe3QoE_2PGmNRoo8Eht4Z-jooKQaERZcn_A2WlFNAwkdGXD9CDn0Me_S8KmuwPpZmqTpQJPsaA_X3dFNTqvzqoO__V6v8az_7nh5d_dn3_7M7wDLw5AZhnv1gMKhqLzmBnA5qkOm___cfVAwkzWGeNHr7jEePvflQsFagv6xauS0gZAK9YxX4CBEPbjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530847911</pqid></control><display><type>article</type><title>Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Miller, K.S ; Lee, Y.U ; Naito, Y ; Breuer, C.K ; Humphrey, J.D</creator><creatorcontrib>Miller, K.S ; Lee, Y.U ; Naito, Y ; Breuer, C.K ; Humphrey, J.D</creatorcontrib><description>Abstract Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enabling time-efficient parametric studies that can reduce the experimental search space. In this paper, we present a first generation computational model for describing the in vivo development of a tissue engineered vein from an implanted polymeric scaffold. The model was motivated by our recent data on the evolution of mechanical properties and microstructural composition over 24 weeks in a mouse inferior vena cava interposition graft. It is shown that these data can be captured well by including both an early inflammatory-mediated and a subsequent mechano-mediated production of extracellular matrix. There remains a pressing need, however, for more data to inform the development of next generation models, particularly the precise transition from the inflammatory to the mechanobiological dominated production of matrix having functional capability.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2013.10.009</identifier><identifier>PMID: 24210474</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Behavior ; Biomechanics ; Biomedical materials ; Blood Vessel Prosthesis ; Collagen ; Computation ; Constrained mixture theory ; Construction ; Deformation ; Extracellular Matrix ; In vivo testing ; In vivo tests ; Inflammation ; Interposition graft ; Kinetics ; Mathematical models ; Mechanosensing ; Mice ; Mice, SCID ; Models, Cardiovascular ; Mouse model ; Physical Medicine and Rehabilitation ; Polymers ; Surgical implants ; Tissue engineering ; Tissue Scaffolds ; Veins ; Veins &amp; arteries ; Vena Cava, Inferior</subject><ispartof>Journal of biomechanics, 2014-06, Vol.47 (9), p.2080-2087</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>2013 Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited 2014</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c690t-1b44a5acd0bdf9fdcae5f0071371c1b44b4555349b0a9b73f1e053f1b99a67d83</citedby><cites>FETCH-LOGICAL-c690t-1b44a5acd0bdf9fdcae5f0071371c1b44b4555349b0a9b73f1e053f1b99a67d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1530847911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24210474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, K.S</creatorcontrib><creatorcontrib>Lee, Y.U</creatorcontrib><creatorcontrib>Naito, Y</creatorcontrib><creatorcontrib>Breuer, C.K</creatorcontrib><creatorcontrib>Humphrey, J.D</creatorcontrib><title>Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enabling time-efficient parametric studies that can reduce the experimental search space. In this paper, we present a first generation computational model for describing the in vivo development of a tissue engineered vein from an implanted polymeric scaffold. The model was motivated by our recent data on the evolution of mechanical properties and microstructural composition over 24 weeks in a mouse inferior vena cava interposition graft. It is shown that these data can be captured well by including both an early inflammatory-mediated and a subsequent mechano-mediated production of extracellular matrix. There remains a pressing need, however, for more data to inform the development of next generation models, particularly the precise transition from the inflammatory to the mechanobiological dominated production of matrix having functional capability.</description><subject>Animals</subject><subject>Behavior</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Blood Vessel Prosthesis</subject><subject>Collagen</subject><subject>Computation</subject><subject>Constrained mixture theory</subject><subject>Construction</subject><subject>Deformation</subject><subject>Extracellular Matrix</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Inflammation</subject><subject>Interposition graft</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Mechanosensing</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Models, Cardiovascular</subject><subject>Mouse model</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Polymers</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><subject>Veins</subject><subject>Veins &amp; arteries</subject><subject>Vena Cava, Inferior</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwFypLXLjsMo7tJL5UoBVfUiUOwNlynEnXS2IH24m0_x6HbQv0Ahdbmnn8embeKYpLClsKtHp92B5a60c0-20JlOXgFkA-Ks5pU7NNyRp4XJwDlHQjSwlnxbMYDwBQ81o-Lc5KXlLgNT8vpp0fpznpZL3TAxl9hwPxPUl7JNaRxS6edLjg4KcRXVpTmiQb44wE3Y11iAE7smCG--BHoh2x4zRol3J48sNxxGANMd7FFGaTnhdPej1EfHF7XxTf3r_7uvu4uf784dPu7fXGVBLShraca6FNB23Xy74zGkWf66espmZNtlwIwbhsQcu2Zj1FEPlspdRV3TXsorg66U5zO2JncvFBD2oKdtThqLy26u-Ms3t14xfFpOS0WQVe3QoE_2PGmNRoo8Eht4Z-jooKQaERZcn_A2WlFNAwkdGXD9CDn0Me_S8KmuwPpZmqTpQJPsaA_X3dFNTqvzqoO__V6v8az_7nh5d_dn3_7M7wDLw5AZhnv1gMKhqLzmBnA5qkOm___cfVAwkzWGeNHr7jEePvflQsFagv6xauS0gZAK9YxX4CBEPbjg</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Miller, K.S</creator><creator>Lee, Y.U</creator><creator>Naito, Y</creator><creator>Breuer, C.K</creator><creator>Humphrey, J.D</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7SR</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20140627</creationdate><title>Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct</title><author>Miller, K.S ; Lee, Y.U ; Naito, Y ; Breuer, C.K ; Humphrey, J.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c690t-1b44a5acd0bdf9fdcae5f0071371c1b44b4555349b0a9b73f1e053f1b99a67d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Blood Vessel Prosthesis</topic><topic>Collagen</topic><topic>Computation</topic><topic>Constrained mixture theory</topic><topic>Construction</topic><topic>Deformation</topic><topic>Extracellular Matrix</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Inflammation</topic><topic>Interposition graft</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Mechanosensing</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Models, Cardiovascular</topic><topic>Mouse model</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Polymers</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><topic>Veins</topic><topic>Veins &amp; arteries</topic><topic>Vena Cava, Inferior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, K.S</creatorcontrib><creatorcontrib>Lee, Y.U</creatorcontrib><creatorcontrib>Naito, Y</creatorcontrib><creatorcontrib>Breuer, C.K</creatorcontrib><creatorcontrib>Humphrey, J.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, K.S</au><au>Lee, Y.U</au><au>Naito, Y</au><au>Breuer, C.K</au><au>Humphrey, J.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2014-06-27</date><risdate>2014</risdate><volume>47</volume><issue>9</issue><spage>2080</spage><epage>2087</epage><pages>2080-2087</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enabling time-efficient parametric studies that can reduce the experimental search space. In this paper, we present a first generation computational model for describing the in vivo development of a tissue engineered vein from an implanted polymeric scaffold. The model was motivated by our recent data on the evolution of mechanical properties and microstructural composition over 24 weeks in a mouse inferior vena cava interposition graft. It is shown that these data can be captured well by including both an early inflammatory-mediated and a subsequent mechano-mediated production of extracellular matrix. There remains a pressing need, however, for more data to inform the development of next generation models, particularly the precise transition from the inflammatory to the mechanobiological dominated production of matrix having functional capability.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>24210474</pmid><doi>10.1016/j.jbiomech.2013.10.009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2014-06, Vol.47 (9), p.2080-2087
issn 0021-9290
1873-2380
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3994188
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Animals
Behavior
Biomechanics
Biomedical materials
Blood Vessel Prosthesis
Collagen
Computation
Constrained mixture theory
Construction
Deformation
Extracellular Matrix
In vivo testing
In vivo tests
Inflammation
Interposition graft
Kinetics
Mathematical models
Mechanosensing
Mice
Mice, SCID
Models, Cardiovascular
Mouse model
Physical Medicine and Rehabilitation
Polymers
Surgical implants
Tissue engineering
Tissue Scaffolds
Veins
Veins & arteries
Vena Cava, Inferior
title Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20model%20of%20the%20in%20vivo%20development%20of%20a%20tissue%20engineered%20vein%20from%20an%20implanted%20polymeric%20construct&rft.jtitle=Journal%20of%20biomechanics&rft.au=Miller,%20K.S&rft.date=2014-06-27&rft.volume=47&rft.issue=9&rft.spage=2080&rft.epage=2087&rft.pages=2080-2087&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2013.10.009&rft_dat=%3Cproquest_pubme%3E3321042841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530847911&rft_id=info:pmid/24210474&rft_els_id=S0021929013004636&rfr_iscdi=true