Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase

Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2014-05, Vol.80 (9), p.2821-2832
Hauptverfasser: Inoue, Kengo, Usami, Yusuke, Ashikawa, Yuji, Noguchi, Haruko, Umeda, Takashi, Yamagami-Ashikawa, Aiko, Horisaki, Tadafumi, Uchimura, Hiromasa, Terada, Tohru, Nakamura, Shugo, Shimizu, Kentaro, Habe, Hiroshi, Yamane, Hisakazu, Fujimoto, Zui, Nojiri, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2832
container_issue 9
container_start_page 2821
container_title Applied and Environmental Microbiology
container_volume 80
creator Inoue, Kengo
Usami, Yusuke
Ashikawa, Yuji
Noguchi, Haruko
Umeda, Takashi
Yamagami-Ashikawa, Aiko
Horisaki, Tadafumi
Uchimura, Hiromasa
Terada, Tohru
Nakamura, Shugo
Shimizu, Kentaro
Habe, Hiroshi
Yamane, Hisakazu
Fujimoto, Zui
Nojiri, Hideaki
description Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.
doi_str_mv 10.1128/AEM.04000-13
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3993299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524409549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-9f1191e2992f30e0c850aa6edd772b5ba0cff766b7d4830ea564312ad749e6d53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERbeFG2dkiUsPTfH4I4kvSFXV0kpFHICz5diTrks2LnZSsb3xn-NttyvgNKOZ3zz76RHyFtgJAG8_nJ5_PmGSMVaBeEEWwHRbKSHql2TBmNYV55Ltk4OcbwsjWd2-IvtcqlaW-YL8_jql2U1zsgPtbA6Zxp5OS6Q-3GO6wXGi8de6VDuFONKE1m2aTJ2d7LB-QE-79eNBCph_IB3juMQV0pAKvj3NWPDU2Yc4IIVjbSsfdqvXZK-3Q8Y323pIvl-cfzu7rK6_fLo6O72unAKYKt0DaECuNe8FQ-Zaxayt0fum4Z3qLHN939R113jZFsCqWgrg1jdSY-2VOCQfn3Tv5m6F3hVrxbS5S2Fl09pEG8y_mzEszU28N0JrUZ4tAkdbgRR_zpgnswrZ4TDYEeOcDSguJdNKbtD3_6G3cU5jsVco0BIaqDfU8RPlUsw5Yb_7DDCzydaUbM1jtgZEwd_9bWAHP4cp_gDTGqHp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519417169</pqid></control><display><type>article</type><title>Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Inoue, Kengo ; Usami, Yusuke ; Ashikawa, Yuji ; Noguchi, Haruko ; Umeda, Takashi ; Yamagami-Ashikawa, Aiko ; Horisaki, Tadafumi ; Uchimura, Hiromasa ; Terada, Tohru ; Nakamura, Shugo ; Shimizu, Kentaro ; Habe, Hiroshi ; Yamane, Hisakazu ; Fujimoto, Zui ; Nojiri, Hideaki</creator><creatorcontrib>Inoue, Kengo ; Usami, Yusuke ; Ashikawa, Yuji ; Noguchi, Haruko ; Umeda, Takashi ; Yamagami-Ashikawa, Aiko ; Horisaki, Tadafumi ; Uchimura, Hiromasa ; Terada, Tohru ; Nakamura, Shugo ; Shimizu, Kentaro ; Habe, Hiroshi ; Yamane, Hisakazu ; Fujimoto, Zui ; Nojiri, Hideaki</creatorcontrib><description>Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.04000-13</identifier><identifier>PMID: 24584240</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Betaproteobacteria - chemistry ; Betaproteobacteria - enzymology ; Betaproteobacteria - genetics ; Binding sites ; Biocatalysis ; Biodegradation ; Carbazoles - metabolism ; Chemical reactions ; Crystallography, X-Ray ; Dioxygenases - chemistry ; Dioxygenases - genetics ; Dioxygenases - metabolism ; Enzymes ; Iron - metabolism ; Janthinobacterium ; Models, Molecular ; Molecular structure ; Mutagenesis ; Mutagenesis, Site-Directed ; Oxidation ; Oxidation-Reduction ; Oxygen - chemistry</subject><ispartof>Applied and Environmental Microbiology, 2014-05, Vol.80 (9), p.2821-2832</ispartof><rights>Copyright American Society for Microbiology May 2014</rights><rights>Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-9f1191e2992f30e0c850aa6edd772b5ba0cff766b7d4830ea564312ad749e6d53</citedby><cites>FETCH-LOGICAL-c511t-9f1191e2992f30e0c850aa6edd772b5ba0cff766b7d4830ea564312ad749e6d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993299/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993299/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24584240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inoue, Kengo</creatorcontrib><creatorcontrib>Usami, Yusuke</creatorcontrib><creatorcontrib>Ashikawa, Yuji</creatorcontrib><creatorcontrib>Noguchi, Haruko</creatorcontrib><creatorcontrib>Umeda, Takashi</creatorcontrib><creatorcontrib>Yamagami-Ashikawa, Aiko</creatorcontrib><creatorcontrib>Horisaki, Tadafumi</creatorcontrib><creatorcontrib>Uchimura, Hiromasa</creatorcontrib><creatorcontrib>Terada, Tohru</creatorcontrib><creatorcontrib>Nakamura, Shugo</creatorcontrib><creatorcontrib>Shimizu, Kentaro</creatorcontrib><creatorcontrib>Habe, Hiroshi</creatorcontrib><creatorcontrib>Yamane, Hisakazu</creatorcontrib><creatorcontrib>Fujimoto, Zui</creatorcontrib><creatorcontrib>Nojiri, Hideaki</creatorcontrib><title>Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Betaproteobacteria - chemistry</subject><subject>Betaproteobacteria - enzymology</subject><subject>Betaproteobacteria - genetics</subject><subject>Binding sites</subject><subject>Biocatalysis</subject><subject>Biodegradation</subject><subject>Carbazoles - metabolism</subject><subject>Chemical reactions</subject><subject>Crystallography, X-Ray</subject><subject>Dioxygenases - chemistry</subject><subject>Dioxygenases - genetics</subject><subject>Dioxygenases - metabolism</subject><subject>Enzymes</subject><subject>Iron - metabolism</subject><subject>Janthinobacterium</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERbeFG2dkiUsPTfH4I4kvSFXV0kpFHICz5diTrks2LnZSsb3xn-NttyvgNKOZ3zz76RHyFtgJAG8_nJ5_PmGSMVaBeEEWwHRbKSHql2TBmNYV55Ltk4OcbwsjWd2-IvtcqlaW-YL8_jql2U1zsgPtbA6Zxp5OS6Q-3GO6wXGi8de6VDuFONKE1m2aTJ2d7LB-QE-79eNBCph_IB3juMQV0pAKvj3NWPDU2Yc4IIVjbSsfdqvXZK-3Q8Y323pIvl-cfzu7rK6_fLo6O72unAKYKt0DaECuNe8FQ-Zaxayt0fum4Z3qLHN939R113jZFsCqWgrg1jdSY-2VOCQfn3Tv5m6F3hVrxbS5S2Fl09pEG8y_mzEszU28N0JrUZ4tAkdbgRR_zpgnswrZ4TDYEeOcDSguJdNKbtD3_6G3cU5jsVco0BIaqDfU8RPlUsw5Yb_7DDCzydaUbM1jtgZEwd_9bWAHP4cp_gDTGqHp</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Inoue, Kengo</creator><creator>Usami, Yusuke</creator><creator>Ashikawa, Yuji</creator><creator>Noguchi, Haruko</creator><creator>Umeda, Takashi</creator><creator>Yamagami-Ashikawa, Aiko</creator><creator>Horisaki, Tadafumi</creator><creator>Uchimura, Hiromasa</creator><creator>Terada, Tohru</creator><creator>Nakamura, Shugo</creator><creator>Shimizu, Kentaro</creator><creator>Habe, Hiroshi</creator><creator>Yamane, Hisakazu</creator><creator>Fujimoto, Zui</creator><creator>Nojiri, Hideaki</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20140501</creationdate><title>Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase</title><author>Inoue, Kengo ; Usami, Yusuke ; Ashikawa, Yuji ; Noguchi, Haruko ; Umeda, Takashi ; Yamagami-Ashikawa, Aiko ; Horisaki, Tadafumi ; Uchimura, Hiromasa ; Terada, Tohru ; Nakamura, Shugo ; Shimizu, Kentaro ; Habe, Hiroshi ; Yamane, Hisakazu ; Fujimoto, Zui ; Nojiri, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-9f1191e2992f30e0c850aa6edd772b5ba0cff766b7d4830ea564312ad749e6d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Betaproteobacteria - chemistry</topic><topic>Betaproteobacteria - enzymology</topic><topic>Betaproteobacteria - genetics</topic><topic>Binding sites</topic><topic>Biocatalysis</topic><topic>Biodegradation</topic><topic>Carbazoles - metabolism</topic><topic>Chemical reactions</topic><topic>Crystallography, X-Ray</topic><topic>Dioxygenases - chemistry</topic><topic>Dioxygenases - genetics</topic><topic>Dioxygenases - metabolism</topic><topic>Enzymes</topic><topic>Iron - metabolism</topic><topic>Janthinobacterium</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inoue, Kengo</creatorcontrib><creatorcontrib>Usami, Yusuke</creatorcontrib><creatorcontrib>Ashikawa, Yuji</creatorcontrib><creatorcontrib>Noguchi, Haruko</creatorcontrib><creatorcontrib>Umeda, Takashi</creatorcontrib><creatorcontrib>Yamagami-Ashikawa, Aiko</creatorcontrib><creatorcontrib>Horisaki, Tadafumi</creatorcontrib><creatorcontrib>Uchimura, Hiromasa</creatorcontrib><creatorcontrib>Terada, Tohru</creatorcontrib><creatorcontrib>Nakamura, Shugo</creatorcontrib><creatorcontrib>Shimizu, Kentaro</creatorcontrib><creatorcontrib>Habe, Hiroshi</creatorcontrib><creatorcontrib>Yamane, Hisakazu</creatorcontrib><creatorcontrib>Fujimoto, Zui</creatorcontrib><creatorcontrib>Nojiri, Hideaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoue, Kengo</au><au>Usami, Yusuke</au><au>Ashikawa, Yuji</au><au>Noguchi, Haruko</au><au>Umeda, Takashi</au><au>Yamagami-Ashikawa, Aiko</au><au>Horisaki, Tadafumi</au><au>Uchimura, Hiromasa</au><au>Terada, Tohru</au><au>Nakamura, Shugo</au><au>Shimizu, Kentaro</au><au>Habe, Hiroshi</au><au>Yamane, Hisakazu</au><au>Fujimoto, Zui</au><au>Nojiri, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>80</volume><issue>9</issue><spage>2821</spage><epage>2832</epage><pages>2821-2832</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>24584240</pmid><doi>10.1128/AEM.04000-13</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2014-05, Vol.80 (9), p.2821-2832
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3993299
source American Society for Microbiology; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Betaproteobacteria - chemistry
Betaproteobacteria - enzymology
Betaproteobacteria - genetics
Binding sites
Biocatalysis
Biodegradation
Carbazoles - metabolism
Chemical reactions
Crystallography, X-Ray
Dioxygenases - chemistry
Dioxygenases - genetics
Dioxygenases - metabolism
Enzymes
Iron - metabolism
Janthinobacterium
Models, Molecular
Molecular structure
Mutagenesis
Mutagenesis, Site-Directed
Oxidation
Oxidation-Reduction
Oxygen - chemistry
title Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20the%20divergent%20oxygenation%20reactions%20catalyzed%20by%20the%20rieske%20nonheme%20iron%20oxygenase%20carbazole%201,9a-dioxygenase&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Inoue,%20Kengo&rft.date=2014-05-01&rft.volume=80&rft.issue=9&rft.spage=2821&rft.epage=2832&rft.pages=2821-2832&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.04000-13&rft_dat=%3Cproquest_pubme%3E1524409549%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519417169&rft_id=info:pmid/24584240&rfr_iscdi=true