Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics
Summary Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B‐cell epitopes, those parts of microbial antigens that contact the variable regions of the protecti...
Gespeichert in:
Veröffentlicht in: | Immunology 2014-05, Vol.142 (1), p.1-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Immunology |
container_volume | 142 |
creator | Sharon, Jacqueline Rynkiewicz, Michael J. Lu, Zhaohua Yang, Chiou‐Ying |
description | Summary
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B‐cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X‐ray crystallography of antigen–antibody complexes, antibody inhibition of hydrogen–deuterium exchange in the antigen, antibody‐induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen–antibody complexes. The diversity in shape, size and structure of protective B‐cell epitopes, and the increasing importance of protective B‐cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V‐shaped Ab52 glycan epitope in the O‐antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1. |
doi_str_mv | 10.1111/imm.12213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3992043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1515645126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5423-399997ee930a36f29d80c7c7b48a61d07f23df0f99e1c84ce23dc2707b4532423</originalsourceid><addsrcrecordid>eNqNkctO3TAQhi0EglPKghdAkdi0i4CvuWyQgJaLBGJT1paPMwGjJA52kurs-gh9xj5JBw4gQEJiNtZoPv2e-X9CthndY1j7rm33GOdMrJAZE5lKucryVTKjlJUpL6jaIF9ivMNWUKXWyQaXnJUFZTPS_nDR-gnCIvF10gc_gB3cBMnRvz9_LTRNAr0bfA8xqX1IKpig8X0L3fDAm25wrbPBz51pkslY6zokTVc9jua-WiTDLQTTwzg4G7-Stdo0Ebae3k1yffLz1_FZenF1en58eJFaJblIRYmVA5SCGpHVvKwKanObz2VhMlbRvOaiqmldlsBsIS1ga3lOEVACbxOb5GCp24_zFiqL6wbT6D641oSF9sbpt5PO3eobP2n8mVMpUODbk0Dw9yPEQbfoE9phOvBj1ExxKdHxnH8CZSqTivEM0d136J0fQ4dOICUzWjAhGFLflxT6GmOA-mVvRvVD3hrz1o95I7vz-tAX8jlgBPaXwG_XwOJjJX1-ebmU_A8TfraO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546081331</pqid></control><display><type>article</type><title>Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sharon, Jacqueline ; Rynkiewicz, Michael J. ; Lu, Zhaohua ; Yang, Chiou‐Ying</creator><creatorcontrib>Sharon, Jacqueline ; Rynkiewicz, Michael J. ; Lu, Zhaohua ; Yang, Chiou‐Ying</creatorcontrib><description>Summary
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B‐cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X‐ray crystallography of antigen–antibody complexes, antibody inhibition of hydrogen–deuterium exchange in the antigen, antibody‐induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen–antibody complexes. The diversity in shape, size and structure of protective B‐cell epitopes, and the increasing importance of protective B‐cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V‐shaped Ab52 glycan epitope in the O‐antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.</description><identifier>ISSN: 0019-2805</identifier><identifier>EISSN: 1365-2567</identifier><identifier>DOI: 10.1111/imm.12213</identifier><identifier>PMID: 24219801</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; antibodies ; Antibodies, Bacterial - immunology ; Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - therapeutic use ; Antibodies, Neutralizing - immunology ; Antibodies, Neutralizing - therapeutic use ; Antibodies, Viral - immunology ; Antigen-Antibody Reactions ; Antigens ; Antigens, Bacterial - chemistry ; Antigens, Bacterial - immunology ; Antigens, Viral - chemistry ; Antigens, Viral - immunology ; antigens/peptides/epitopes ; Bacterial Vaccines - immunology ; Bacterial Vaccines - therapeutic use ; Epitope Mapping ; Epitopes, B-Lymphocyte - chemistry ; Epitopes, B-Lymphocyte - immunology ; Francisella tularensis ; human ; Human immunodeficiency virus ; Humans ; Influenza virus ; Models, Molecular ; Protein Conformation ; Review ; structural biology/crystallography ; Vaccines ; Viral Vaccines - immunology ; Viral Vaccines - therapeutic use</subject><ispartof>Immunology, 2014-05, Vol.142 (1), p.1-23</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><rights>2013 John Wiley & Sons Ltd, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5423-399997ee930a36f29d80c7c7b48a61d07f23df0f99e1c84ce23dc2707b4532423</citedby><cites>FETCH-LOGICAL-c5423-399997ee930a36f29d80c7c7b48a61d07f23df0f99e1c84ce23dc2707b4532423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992043/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992043/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24219801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharon, Jacqueline</creatorcontrib><creatorcontrib>Rynkiewicz, Michael J.</creatorcontrib><creatorcontrib>Lu, Zhaohua</creatorcontrib><creatorcontrib>Yang, Chiou‐Ying</creatorcontrib><title>Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics</title><title>Immunology</title><addtitle>Immunology</addtitle><description>Summary
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B‐cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X‐ray crystallography of antigen–antibody complexes, antibody inhibition of hydrogen–deuterium exchange in the antigen, antibody‐induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen–antibody complexes. The diversity in shape, size and structure of protective B‐cell epitopes, and the increasing importance of protective B‐cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V‐shaped Ab52 glycan epitope in the O‐antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.</description><subject>Animals</subject><subject>antibodies</subject><subject>Antibodies, Bacterial - immunology</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - therapeutic use</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Antibodies, Neutralizing - therapeutic use</subject><subject>Antibodies, Viral - immunology</subject><subject>Antigen-Antibody Reactions</subject><subject>Antigens</subject><subject>Antigens, Bacterial - chemistry</subject><subject>Antigens, Bacterial - immunology</subject><subject>Antigens, Viral - chemistry</subject><subject>Antigens, Viral - immunology</subject><subject>antigens/peptides/epitopes</subject><subject>Bacterial Vaccines - immunology</subject><subject>Bacterial Vaccines - therapeutic use</subject><subject>Epitope Mapping</subject><subject>Epitopes, B-Lymphocyte - chemistry</subject><subject>Epitopes, B-Lymphocyte - immunology</subject><subject>Francisella tularensis</subject><subject>human</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Influenza virus</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Review</subject><subject>structural biology/crystallography</subject><subject>Vaccines</subject><subject>Viral Vaccines - immunology</subject><subject>Viral Vaccines - therapeutic use</subject><issn>0019-2805</issn><issn>1365-2567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctO3TAQhi0EglPKghdAkdi0i4CvuWyQgJaLBGJT1paPMwGjJA52kurs-gh9xj5JBw4gQEJiNtZoPv2e-X9CthndY1j7rm33GOdMrJAZE5lKucryVTKjlJUpL6jaIF9ivMNWUKXWyQaXnJUFZTPS_nDR-gnCIvF10gc_gB3cBMnRvz9_LTRNAr0bfA8xqX1IKpig8X0L3fDAm25wrbPBz51pkslY6zokTVc9jua-WiTDLQTTwzg4G7-Stdo0Ebae3k1yffLz1_FZenF1en58eJFaJblIRYmVA5SCGpHVvKwKanObz2VhMlbRvOaiqmldlsBsIS1ga3lOEVACbxOb5GCp24_zFiqL6wbT6D641oSF9sbpt5PO3eobP2n8mVMpUODbk0Dw9yPEQbfoE9phOvBj1ExxKdHxnH8CZSqTivEM0d136J0fQ4dOICUzWjAhGFLflxT6GmOA-mVvRvVD3hrz1o95I7vz-tAX8jlgBPaXwG_XwOJjJX1-ebmU_A8TfraO</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Sharon, Jacqueline</creator><creator>Rynkiewicz, Michael J.</creator><creator>Lu, Zhaohua</creator><creator>Yang, Chiou‐Ying</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley & Sons Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T5</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7T7</scope><scope>5PM</scope></search><sort><creationdate>201405</creationdate><title>Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics</title><author>Sharon, Jacqueline ; Rynkiewicz, Michael J. ; Lu, Zhaohua ; Yang, Chiou‐Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5423-399997ee930a36f29d80c7c7b48a61d07f23df0f99e1c84ce23dc2707b4532423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>antibodies</topic><topic>Antibodies, Bacterial - immunology</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - therapeutic use</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Antibodies, Neutralizing - therapeutic use</topic><topic>Antibodies, Viral - immunology</topic><topic>Antigen-Antibody Reactions</topic><topic>Antigens</topic><topic>Antigens, Bacterial - chemistry</topic><topic>Antigens, Bacterial - immunology</topic><topic>Antigens, Viral - chemistry</topic><topic>Antigens, Viral - immunology</topic><topic>antigens/peptides/epitopes</topic><topic>Bacterial Vaccines - immunology</topic><topic>Bacterial Vaccines - therapeutic use</topic><topic>Epitope Mapping</topic><topic>Epitopes, B-Lymphocyte - chemistry</topic><topic>Epitopes, B-Lymphocyte - immunology</topic><topic>Francisella tularensis</topic><topic>human</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Influenza virus</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Review</topic><topic>structural biology/crystallography</topic><topic>Vaccines</topic><topic>Viral Vaccines - immunology</topic><topic>Viral Vaccines - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharon, Jacqueline</creatorcontrib><creatorcontrib>Rynkiewicz, Michael J.</creatorcontrib><creatorcontrib>Lu, Zhaohua</creatorcontrib><creatorcontrib>Yang, Chiou‐Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharon, Jacqueline</au><au>Rynkiewicz, Michael J.</au><au>Lu, Zhaohua</au><au>Yang, Chiou‐Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics</atitle><jtitle>Immunology</jtitle><addtitle>Immunology</addtitle><date>2014-05</date><risdate>2014</risdate><volume>142</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0019-2805</issn><eissn>1365-2567</eissn><abstract>Summary
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B‐cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X‐ray crystallography of antigen–antibody complexes, antibody inhibition of hydrogen–deuterium exchange in the antigen, antibody‐induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen–antibody complexes. The diversity in shape, size and structure of protective B‐cell epitopes, and the increasing importance of protective B‐cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V‐shaped Ab52 glycan epitope in the O‐antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>24219801</pmid><doi>10.1111/imm.12213</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-2805 |
ispartof | Immunology, 2014-05, Vol.142 (1), p.1-23 |
issn | 0019-2805 1365-2567 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3992043 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals antibodies Antibodies, Bacterial - immunology Antibodies, Monoclonal - immunology Antibodies, Monoclonal - therapeutic use Antibodies, Neutralizing - immunology Antibodies, Neutralizing - therapeutic use Antibodies, Viral - immunology Antigen-Antibody Reactions Antigens Antigens, Bacterial - chemistry Antigens, Bacterial - immunology Antigens, Viral - chemistry Antigens, Viral - immunology antigens/peptides/epitopes Bacterial Vaccines - immunology Bacterial Vaccines - therapeutic use Epitope Mapping Epitopes, B-Lymphocyte - chemistry Epitopes, B-Lymphocyte - immunology Francisella tularensis human Human immunodeficiency virus Humans Influenza virus Models, Molecular Protein Conformation Review structural biology/crystallography Vaccines Viral Vaccines - immunology Viral Vaccines - therapeutic use |
title | Discovery of protective B‐cell epitopes for development of antimicrobial vaccines and antibody therapeutics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20protective%20B%E2%80%90cell%20epitopes%20for%20development%20of%20antimicrobial%20vaccines%20and%20antibody%20therapeutics&rft.jtitle=Immunology&rft.au=Sharon,%20Jacqueline&rft.date=2014-05&rft.volume=142&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0019-2805&rft.eissn=1365-2567&rft_id=info:doi/10.1111/imm.12213&rft_dat=%3Cproquest_pubme%3E1515645126%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546081331&rft_id=info:pmid/24219801&rfr_iscdi=true |