Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement
Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and vali...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2014-01, Vol.85 (1), p.51-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 85 |
creator | Durduran, Turgut Yodh, Arjun G. |
description | Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli.
•Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism. |
doi_str_mv | 10.1016/j.neuroimage.2013.06.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191300654X</els_id><sourcerecordid>1467068471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRSMEYh7wC8gSGxYkuOJXvEFiniCNxAbWluNUBrcSu7GTRvP3uNXDDLCBlcvyqVvle6uKAG2Agny3aQKuKfrZ3mLTUmANlQ0F9aQ6BqpFrYVqn-5rweoOQB9VJzlvKKUaePe8OmqZUpTT7riyF34c14zExZRwsouPgeQtuiXF7OL2jowxkRBD7cPOZr_Dt2T2LsW63Nw62UQcJuyTnUg_xTiQcYo_yIw2rwlnDMuL6tlop4wv78_T6uvV5Zfzj_XN5-tP5x9uaieZXuoBKeW9tEqhlqLUagDgQ8s7dNwhsMGNTIPuZWs5WksFMAESRtkqyZGx0-r9QXe79jMOrowuS5ltKi6lOxOtN3--BP_N3MadYVqDELwIvLkXSPH7inkxs88Op8kGjGs2ULZSEqD7D5RLRWXHFRT09V_oJq4pFCeKoADFRAuiUN2BKs7mnHB82Buo2UduNuYxcrOP3FBpSuSl9dXv_35o_JVxAc4OABb3dx6Tyc5jcDj4VHI2Q_T_nvIT5mXD0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551735215</pqid></control><display><type>article</type><title>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Durduran, Turgut ; Yodh, Arjun G.</creator><creatorcontrib>Durduran, Turgut ; Yodh, Arjun G.</creatorcontrib><description>Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli.
•Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.06.017</identifier><identifier>PMID: 23770408</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Biomarkers ; Blood ; Brain ; Brain - anatomy & histology ; Brain research ; Calibration ; Cerebral blood flow ; Cerebral metabolic rate of oxygen extraction ; Cerebrovascular Circulation - physiology ; Diffuse correlation spectroscopy ; Diffuse optics ; Functional neuroimaging ; Humans ; Hypoxia ; Infant, Newborn ; Ischemic stroke ; Metabolism ; Near-infrared spectroscopy ; Neonatalogy ; Neurocritical care ; Neuroimaging - instrumentation ; Neuroimaging - methods ; NMR ; Nuclear magnetic resonance ; Optics ; Oxygen Consumption - physiology ; Risk Assessment ; Spectroscopy, Near-Infrared - instrumentation ; Spectroscopy, Near-Infrared - methods ; Swine</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-01, Vol.85 (1), p.51-63</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 15, 2014</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</citedby><cites>FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1551735215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23770408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durduran, Turgut</creatorcontrib><creatorcontrib>Yodh, Arjun G.</creatorcontrib><title>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli.
•Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain research</subject><subject>Calibration</subject><subject>Cerebral blood flow</subject><subject>Cerebral metabolic rate of oxygen extraction</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Diffuse correlation spectroscopy</subject><subject>Diffuse optics</subject><subject>Functional neuroimaging</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Infant, Newborn</subject><subject>Ischemic stroke</subject><subject>Metabolism</subject><subject>Near-infrared spectroscopy</subject><subject>Neonatalogy</subject><subject>Neurocritical care</subject><subject>Neuroimaging - instrumentation</subject><subject>Neuroimaging - methods</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optics</subject><subject>Oxygen Consumption - physiology</subject><subject>Risk Assessment</subject><subject>Spectroscopy, Near-Infrared - instrumentation</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Swine</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcuO1DAQRSMEYh7wC8gSGxYkuOJXvEFiniCNxAbWluNUBrcSu7GTRvP3uNXDDLCBlcvyqVvle6uKAG2Agny3aQKuKfrZ3mLTUmANlQ0F9aQ6BqpFrYVqn-5rweoOQB9VJzlvKKUaePe8OmqZUpTT7riyF34c14zExZRwsouPgeQtuiXF7OL2jowxkRBD7cPOZr_Dt2T2LsW63Nw62UQcJuyTnUg_xTiQcYo_yIw2rwlnDMuL6tlop4wv78_T6uvV5Zfzj_XN5-tP5x9uaieZXuoBKeW9tEqhlqLUagDgQ8s7dNwhsMGNTIPuZWs5WksFMAESRtkqyZGx0-r9QXe79jMOrowuS5ltKi6lOxOtN3--BP_N3MadYVqDELwIvLkXSPH7inkxs88Op8kGjGs2ULZSEqD7D5RLRWXHFRT09V_oJq4pFCeKoADFRAuiUN2BKs7mnHB82Buo2UduNuYxcrOP3FBpSuSl9dXv_35o_JVxAc4OABb3dx6Tyc5jcDj4VHI2Q_T_nvIT5mXD0Q</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Durduran, Turgut</creator><creator>Yodh, Arjun G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20140115</creationdate><title>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</title><author>Durduran, Turgut ; Yodh, Arjun G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain research</topic><topic>Calibration</topic><topic>Cerebral blood flow</topic><topic>Cerebral metabolic rate of oxygen extraction</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Diffuse correlation spectroscopy</topic><topic>Diffuse optics</topic><topic>Functional neuroimaging</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Infant, Newborn</topic><topic>Ischemic stroke</topic><topic>Metabolism</topic><topic>Near-infrared spectroscopy</topic><topic>Neonatalogy</topic><topic>Neurocritical care</topic><topic>Neuroimaging - instrumentation</topic><topic>Neuroimaging - methods</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optics</topic><topic>Oxygen Consumption - physiology</topic><topic>Risk Assessment</topic><topic>Spectroscopy, Near-Infrared - instrumentation</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durduran, Turgut</creatorcontrib><creatorcontrib>Yodh, Arjun G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durduran, Turgut</au><au>Yodh, Arjun G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>85</volume><issue>1</issue><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli.
•Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23770408</pmid><doi>10.1016/j.neuroimage.2013.06.017</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2014-01, Vol.85 (1), p.51-63 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991554 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Animals Animals, Newborn Biomarkers Blood Brain Brain - anatomy & histology Brain research Calibration Cerebral blood flow Cerebral metabolic rate of oxygen extraction Cerebrovascular Circulation - physiology Diffuse correlation spectroscopy Diffuse optics Functional neuroimaging Humans Hypoxia Infant, Newborn Ischemic stroke Metabolism Near-infrared spectroscopy Neonatalogy Neurocritical care Neuroimaging - instrumentation Neuroimaging - methods NMR Nuclear magnetic resonance Optics Oxygen Consumption - physiology Risk Assessment Spectroscopy, Near-Infrared - instrumentation Spectroscopy, Near-Infrared - methods Swine |
title | Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffuse%20correlation%20spectroscopy%20for%20non-invasive,%20micro-vascular%20cerebral%20blood%20flow%20measurement&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Durduran,%20Turgut&rft.date=2014-01-15&rft.volume=85&rft.issue=1&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.06.017&rft_dat=%3Cproquest_pubme%3E1467068471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551735215&rft_id=info:pmid/23770408&rft_els_id=S105381191300654X&rfr_iscdi=true |