Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement

Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and vali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2014-01, Vol.85 (1), p.51-63
Hauptverfasser: Durduran, Turgut, Yodh, Arjun G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 51
container_title NeuroImage (Orlando, Fla.)
container_volume 85
creator Durduran, Turgut
Yodh, Arjun G.
description Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli. •Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.
doi_str_mv 10.1016/j.neuroimage.2013.06.017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191300654X</els_id><sourcerecordid>1467068471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRSMEYh7wC8gSGxYkuOJXvEFiniCNxAbWluNUBrcSu7GTRvP3uNXDDLCBlcvyqVvle6uKAG2Agny3aQKuKfrZ3mLTUmANlQ0F9aQ6BqpFrYVqn-5rweoOQB9VJzlvKKUaePe8OmqZUpTT7riyF34c14zExZRwsouPgeQtuiXF7OL2jowxkRBD7cPOZr_Dt2T2LsW63Nw62UQcJuyTnUg_xTiQcYo_yIw2rwlnDMuL6tlop4wv78_T6uvV5Zfzj_XN5-tP5x9uaieZXuoBKeW9tEqhlqLUagDgQ8s7dNwhsMGNTIPuZWs5WksFMAESRtkqyZGx0-r9QXe79jMOrowuS5ltKi6lOxOtN3--BP_N3MadYVqDELwIvLkXSPH7inkxs88Op8kGjGs2ULZSEqD7D5RLRWXHFRT09V_oJq4pFCeKoADFRAuiUN2BKs7mnHB82Buo2UduNuYxcrOP3FBpSuSl9dXv_35o_JVxAc4OABb3dx6Tyc5jcDj4VHI2Q_T_nvIT5mXD0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551735215</pqid></control><display><type>article</type><title>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Durduran, Turgut ; Yodh, Arjun G.</creator><creatorcontrib>Durduran, Turgut ; Yodh, Arjun G.</creatorcontrib><description>Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli. •Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.06.017</identifier><identifier>PMID: 23770408</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Biomarkers ; Blood ; Brain ; Brain - anatomy &amp; histology ; Brain research ; Calibration ; Cerebral blood flow ; Cerebral metabolic rate of oxygen extraction ; Cerebrovascular Circulation - physiology ; Diffuse correlation spectroscopy ; Diffuse optics ; Functional neuroimaging ; Humans ; Hypoxia ; Infant, Newborn ; Ischemic stroke ; Metabolism ; Near-infrared spectroscopy ; Neonatalogy ; Neurocritical care ; Neuroimaging - instrumentation ; Neuroimaging - methods ; NMR ; Nuclear magnetic resonance ; Optics ; Oxygen Consumption - physiology ; Risk Assessment ; Spectroscopy, Near-Infrared - instrumentation ; Spectroscopy, Near-Infrared - methods ; Swine</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-01, Vol.85 (1), p.51-63</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 15, 2014</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</citedby><cites>FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1551735215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23770408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durduran, Turgut</creatorcontrib><creatorcontrib>Yodh, Arjun G.</creatorcontrib><title>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli. •Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain research</subject><subject>Calibration</subject><subject>Cerebral blood flow</subject><subject>Cerebral metabolic rate of oxygen extraction</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Diffuse correlation spectroscopy</subject><subject>Diffuse optics</subject><subject>Functional neuroimaging</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Infant, Newborn</subject><subject>Ischemic stroke</subject><subject>Metabolism</subject><subject>Near-infrared spectroscopy</subject><subject>Neonatalogy</subject><subject>Neurocritical care</subject><subject>Neuroimaging - instrumentation</subject><subject>Neuroimaging - methods</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optics</subject><subject>Oxygen Consumption - physiology</subject><subject>Risk Assessment</subject><subject>Spectroscopy, Near-Infrared - instrumentation</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Swine</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcuO1DAQRSMEYh7wC8gSGxYkuOJXvEFiniCNxAbWluNUBrcSu7GTRvP3uNXDDLCBlcvyqVvle6uKAG2Agny3aQKuKfrZ3mLTUmANlQ0F9aQ6BqpFrYVqn-5rweoOQB9VJzlvKKUaePe8OmqZUpTT7riyF34c14zExZRwsouPgeQtuiXF7OL2jowxkRBD7cPOZr_Dt2T2LsW63Nw62UQcJuyTnUg_xTiQcYo_yIw2rwlnDMuL6tlop4wv78_T6uvV5Zfzj_XN5-tP5x9uaieZXuoBKeW9tEqhlqLUagDgQ8s7dNwhsMGNTIPuZWs5WksFMAESRtkqyZGx0-r9QXe79jMOrowuS5ltKi6lOxOtN3--BP_N3MadYVqDELwIvLkXSPH7inkxs88Op8kGjGs2ULZSEqD7D5RLRWXHFRT09V_oJq4pFCeKoADFRAuiUN2BKs7mnHB82Buo2UduNuYxcrOP3FBpSuSl9dXv_35o_JVxAc4OABb3dx6Tyc5jcDj4VHI2Q_T_nvIT5mXD0Q</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Durduran, Turgut</creator><creator>Yodh, Arjun G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20140115</creationdate><title>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</title><author>Durduran, Turgut ; Yodh, Arjun G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-de004b6a77e9650047d114d248ec4ce13dcf3919b62a4eaa05135161f62764e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain research</topic><topic>Calibration</topic><topic>Cerebral blood flow</topic><topic>Cerebral metabolic rate of oxygen extraction</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Diffuse correlation spectroscopy</topic><topic>Diffuse optics</topic><topic>Functional neuroimaging</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Infant, Newborn</topic><topic>Ischemic stroke</topic><topic>Metabolism</topic><topic>Near-infrared spectroscopy</topic><topic>Neonatalogy</topic><topic>Neurocritical care</topic><topic>Neuroimaging - instrumentation</topic><topic>Neuroimaging - methods</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optics</topic><topic>Oxygen Consumption - physiology</topic><topic>Risk Assessment</topic><topic>Spectroscopy, Near-Infrared - instrumentation</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durduran, Turgut</creatorcontrib><creatorcontrib>Yodh, Arjun G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durduran, Turgut</au><au>Yodh, Arjun G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>85</volume><issue>1</issue><spage>51</spage><epage>63</epage><pages>51-63</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli. •Diffuse correlation spectroscopy (DCS) for clinical and functional neuroimaging.•Optical measurement of cerebral blood flow (CBF) with DCS is presented.•Hybrid fNIRS and fDCS is presented as a method to measure cerebral metabolism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23770408</pmid><doi>10.1016/j.neuroimage.2013.06.017</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2014-01, Vol.85 (1), p.51-63
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991554
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Animals
Animals, Newborn
Biomarkers
Blood
Brain
Brain - anatomy & histology
Brain research
Calibration
Cerebral blood flow
Cerebral metabolic rate of oxygen extraction
Cerebrovascular Circulation - physiology
Diffuse correlation spectroscopy
Diffuse optics
Functional neuroimaging
Humans
Hypoxia
Infant, Newborn
Ischemic stroke
Metabolism
Near-infrared spectroscopy
Neonatalogy
Neurocritical care
Neuroimaging - instrumentation
Neuroimaging - methods
NMR
Nuclear magnetic resonance
Optics
Oxygen Consumption - physiology
Risk Assessment
Spectroscopy, Near-Infrared - instrumentation
Spectroscopy, Near-Infrared - methods
Swine
title Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffuse%20correlation%20spectroscopy%20for%20non-invasive,%20micro-vascular%20cerebral%20blood%20flow%20measurement&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Durduran,%20Turgut&rft.date=2014-01-15&rft.volume=85&rft.issue=1&rft.spage=51&rft.epage=63&rft.pages=51-63&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.06.017&rft_dat=%3Cproquest_pubme%3E1467068471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551735215&rft_id=info:pmid/23770408&rft_els_id=S105381191300654X&rfr_iscdi=true