Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E
Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assembl...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2014-04, Vol.164 (4), p.1820-1830 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 4 |
container_start_page | 1820 |
container_title | Plant physiology (Bethesda) |
container_volume | 164 |
creator | Patrick, Ryan M. Mayberry, Laura K. Choy, Grace Woodard, Lauren E. Liu, Joceline S. White, Allyson Mullen, Rebecca A. Tanavin, Toug M. Latz, Christopher A. Browning, Karen S. |
description | Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation. |
doi_str_mv | 10.1104/pp.113.227785 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3982745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43191363</jstor_id><sourcerecordid>43191363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-d86c0590220d39cf376f7c0b190fbc2e7b2e9f55bb45d5269061d7c18a4a00373</originalsourceid><addsrcrecordid>eNqFkk1v0zAYxy0EYt3gyBHkI5cMv8bJBWnq2lGpAg7lbDmOQz2SPMF2ivZ1-KS46qjgtNNj6__T_3lF6A0l15QS8WGacuTXjClVyWdoQSVnBZOieo4WhOQ3qar6Al3GeE8IoZyKl-iCCUloVhfo9-4X4JtgGt_CFH3EW7Aer0YLrcOf4eB6vJp_mPAAyVu8GX3yJnkY8drYBAGLFd5E6CAMEe_2JmUvh9fzaI-Q6fsHfOtj8vmPuwADTnuHlzBGFw6uxV97M6anErxCLzrTR_f6MV6hb-vVbvmp2H652yxvtoUVgqWirUpLZE0YIy2vbcdV2SlLGlqTrrHMqYa5upOyaYRsJStrUtJWWVoZYfIoFL9CH0--09wMrrVuTMH0egp-yOVpMF7_r4x-r7_DQfO6YkrIbPD-0SDAz9nFpAcfretzkw7mqNlxAVQpxp9EqaRCcKFqmtHihNoAMQbXnSuiRB9PQE9TjlyfTiDz7_5t40z_3XkG3p6A-5gHfNYFpzlbyfkfiBa4Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514434791</pqid></control><display><type>article</type><title>Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Patrick, Ryan M. ; Mayberry, Laura K. ; Choy, Grace ; Woodard, Lauren E. ; Liu, Joceline S. ; White, Allyson ; Mullen, Rebecca A. ; Tanavin, Toug M. ; Latz, Christopher A. ; Browning, Karen S.</creator><creatorcontrib>Patrick, Ryan M. ; Mayberry, Laura K. ; Choy, Grace ; Woodard, Lauren E. ; Liu, Joceline S. ; White, Allyson ; Mullen, Rebecca A. ; Tanavin, Toug M. ; Latz, Christopher A. ; Browning, Karen S.</creatorcontrib><description>Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.113.227785</identifier><identifier>PMID: 24501003</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - metabolism ; BIOCHEMISTRY AND METABOLISM ; Biological Assay ; Computer Simulation ; Conserved Sequence ; Electrophoresis, Polyacrylamide Gel ; Eukaryotic Initiation Factor-4E - metabolism ; Eukaryotic Initiation Factor-4G - metabolism ; Eukaryotic initiation factors ; Genes ; Genetic Complementation Test ; Genetic Loci ; Genetic screening ; Genomes ; Guanosine - analogs & derivatives ; Guanosine - metabolism ; loci ; Messenger RNA ; Molecular Sequence Data ; Peptide initiation factors ; Phylogeny ; Plants ; Protein Binding ; Protein Biosynthesis ; Protein isoforms ; Protein Isoforms - chemistry ; Protein Isoforms - metabolism ; Proteins ; RNA ; Saccharomyces cerevisiae - metabolism ; Self-Fertilization ; translation (genetics) ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2014-04, Vol.164 (4), p.1820-1830</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All Rights Reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-d86c0590220d39cf376f7c0b190fbc2e7b2e9f55bb45d5269061d7c18a4a00373</citedby><cites>FETCH-LOGICAL-c442t-d86c0590220d39cf376f7c0b190fbc2e7b2e9f55bb45d5269061d7c18a4a00373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43191363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43191363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24501003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patrick, Ryan M.</creatorcontrib><creatorcontrib>Mayberry, Laura K.</creatorcontrib><creatorcontrib>Choy, Grace</creatorcontrib><creatorcontrib>Woodard, Lauren E.</creatorcontrib><creatorcontrib>Liu, Joceline S.</creatorcontrib><creatorcontrib>White, Allyson</creatorcontrib><creatorcontrib>Mullen, Rebecca A.</creatorcontrib><creatorcontrib>Tanavin, Toug M.</creatorcontrib><creatorcontrib>Latz, Christopher A.</creatorcontrib><creatorcontrib>Browning, Karen S.</creatorcontrib><title>Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.</description><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological Assay</subject><subject>Computer Simulation</subject><subject>Conserved Sequence</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Eukaryotic Initiation Factor-4G - metabolism</subject><subject>Eukaryotic initiation factors</subject><subject>Genes</subject><subject>Genetic Complementation Test</subject><subject>Genetic Loci</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Guanosine - analogs & derivatives</subject><subject>Guanosine - metabolism</subject><subject>loci</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Peptide initiation factors</subject><subject>Phylogeny</subject><subject>Plants</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein isoforms</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>RNA</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Self-Fertilization</subject><subject>translation (genetics)</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v0zAYxy0EYt3gyBHkI5cMv8bJBWnq2lGpAg7lbDmOQz2SPMF2ivZ1-KS46qjgtNNj6__T_3lF6A0l15QS8WGacuTXjClVyWdoQSVnBZOieo4WhOQ3qar6Al3GeE8IoZyKl-iCCUloVhfo9-4X4JtgGt_CFH3EW7Aer0YLrcOf4eB6vJp_mPAAyVu8GX3yJnkY8drYBAGLFd5E6CAMEe_2JmUvh9fzaI-Q6fsHfOtj8vmPuwADTnuHlzBGFw6uxV97M6anErxCLzrTR_f6MV6hb-vVbvmp2H652yxvtoUVgqWirUpLZE0YIy2vbcdV2SlLGlqTrrHMqYa5upOyaYRsJStrUtJWWVoZYfIoFL9CH0--09wMrrVuTMH0egp-yOVpMF7_r4x-r7_DQfO6YkrIbPD-0SDAz9nFpAcfretzkw7mqNlxAVQpxp9EqaRCcKFqmtHihNoAMQbXnSuiRB9PQE9TjlyfTiDz7_5t40z_3XkG3p6A-5gHfNYFpzlbyfkfiBa4Nw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Patrick, Ryan M.</creator><creator>Mayberry, Laura K.</creator><creator>Choy, Grace</creator><creator>Woodard, Lauren E.</creator><creator>Liu, Joceline S.</creator><creator>White, Allyson</creator><creator>Mullen, Rebecca A.</creator><creator>Tanavin, Toug M.</creator><creator>Latz, Christopher A.</creator><creator>Browning, Karen S.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E</title><author>Patrick, Ryan M. ; Mayberry, Laura K. ; Choy, Grace ; Woodard, Lauren E. ; Liu, Joceline S. ; White, Allyson ; Mullen, Rebecca A. ; Tanavin, Toug M. ; Latz, Christopher A. ; Browning, Karen S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-d86c0590220d39cf376f7c0b190fbc2e7b2e9f55bb45d5269061d7c18a4a00373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological Assay</topic><topic>Computer Simulation</topic><topic>Conserved Sequence</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Eukaryotic Initiation Factor-4G - metabolism</topic><topic>Eukaryotic initiation factors</topic><topic>Genes</topic><topic>Genetic Complementation Test</topic><topic>Genetic Loci</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Guanosine - analogs & derivatives</topic><topic>Guanosine - metabolism</topic><topic>loci</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Peptide initiation factors</topic><topic>Phylogeny</topic><topic>Plants</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein isoforms</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>RNA</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Self-Fertilization</topic><topic>translation (genetics)</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, Ryan M.</creatorcontrib><creatorcontrib>Mayberry, Laura K.</creatorcontrib><creatorcontrib>Choy, Grace</creatorcontrib><creatorcontrib>Woodard, Lauren E.</creatorcontrib><creatorcontrib>Liu, Joceline S.</creatorcontrib><creatorcontrib>White, Allyson</creatorcontrib><creatorcontrib>Mullen, Rebecca A.</creatorcontrib><creatorcontrib>Tanavin, Toug M.</creatorcontrib><creatorcontrib>Latz, Christopher A.</creatorcontrib><creatorcontrib>Browning, Karen S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, Ryan M.</au><au>Mayberry, Laura K.</au><au>Choy, Grace</au><au>Woodard, Lauren E.</au><au>Liu, Joceline S.</au><au>White, Allyson</au><au>Mullen, Rebecca A.</au><au>Tanavin, Toug M.</au><au>Latz, Christopher A.</au><au>Browning, Karen S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>164</volume><issue>4</issue><spage>1820</spage><epage>1830</epage><pages>1820-1830</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>24501003</pmid><doi>10.1104/pp.113.227785</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2014-04, Vol.164 (4), p.1820-1830 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3982745 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Arabidopsis Arabidopsis - metabolism Arabidopsis Proteins - chemistry Arabidopsis Proteins - metabolism BIOCHEMISTRY AND METABOLISM Biological Assay Computer Simulation Conserved Sequence Electrophoresis, Polyacrylamide Gel Eukaryotic Initiation Factor-4E - metabolism Eukaryotic Initiation Factor-4G - metabolism Eukaryotic initiation factors Genes Genetic Complementation Test Genetic Loci Genetic screening Genomes Guanosine - analogs & derivatives Guanosine - metabolism loci Messenger RNA Molecular Sequence Data Peptide initiation factors Phylogeny Plants Protein Binding Protein Biosynthesis Protein isoforms Protein Isoforms - chemistry Protein Isoforms - metabolism Proteins RNA Saccharomyces cerevisiae - metabolism Self-Fertilization translation (genetics) Yeasts |
title | Two Arabidopsis Loci Encode Novel Eukaryotic Initiation Factor 4E Isoforms That Are Functionally Distinct from the Conserved Plant Eukaryotic Initiation Factor 4E |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Arabidopsis%20Loci%20Encode%20Novel%20Eukaryotic%20Initiation%20Factor%204E%20Isoforms%20That%20Are%20Functionally%20Distinct%20from%20the%20Conserved%20Plant%20Eukaryotic%20Initiation%20Factor%204E&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Patrick,%20Ryan%20M.&rft.date=2014-04-01&rft.volume=164&rft.issue=4&rft.spage=1820&rft.epage=1830&rft.pages=1820-1830&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.113.227785&rft_dat=%3Cjstor_pubme%3E43191363%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514434791&rft_id=info:pmid/24501003&rft_jstor_id=43191363&rfr_iscdi=true |