Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments
Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to q...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (13), p.4874-4879 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4879 |
---|---|
container_issue | 13 |
container_start_page | 4874 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Soranno, Andrea Koenig, Iwo Borgia, Madeleine B. Hofmann, Hagen Zosel, Franziska Nettels, Daniel Schuler, Benjamin |
description | Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu. |
doi_str_mv | 10.1073/pnas.1322611111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771188</jstor_id><sourcerecordid>23771188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</originalsourceid><addsrcrecordid>eNpdkU2P0zAQQC0EYrsLZ05AJC5csuvxZ3xBQisWkFbisOzZchy7uEriYCdF_fe4amkBX2x53jzPeBB6BfgasKQ302jyNVBCBOzXE7QCrKAWTOGnaIUxkXXDCLtAlzlvMMaKN_g5uiBMUMUxXiH7EMZ17-oh9s4uvavy5OycYrZx2lXJbZ3pczXFfje4VDnvSzRX0VddyDF1LrmumlKcXRhzFcbKpvirK3du3IYUx8GNc36BnvlicS-P-xV6vPv0_fZLff_t89fbj_e15VzOtWygU7ITHlNvfNtSIihtlOpa4ZUlnWwkllxxpqClWLFyaGXDqBWKAQZDr9CHg3da2sF1trydTK-nFAaTdjqaoP-NjOGHXsetpkpKIngRvD8KUvy5uDzrIWTr-t6MLi5ZAwfGKCdSFPTdf-gmLmks7e0pTlQplRTq5kCVb8k5OX8qBrDeD1DvB6jPAywZb_7u4cT_mVgB3h6BfeZJB1AsmjWSFeL1gdjkOaazgUoJ0DRngzdRm3UKWT8-EAwCY2CUCqC_AYWftTE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515290752</pqid></control><display><type>article</type><title>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soranno, Andrea ; Koenig, Iwo ; Borgia, Madeleine B. ; Hofmann, Hagen ; Zosel, Franziska ; Nettels, Daniel ; Schuler, Benjamin</creator><creatorcontrib>Soranno, Andrea ; Koenig, Iwo ; Borgia, Madeleine B. ; Hofmann, Hagen ; Zosel, Franziska ; Nettels, Daniel ; Schuler, Benjamin</creatorcontrib><description>Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1322611111</identifier><identifier>PMID: 24639500</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Biochemistry ; Biological Sciences ; Biopolymers ; Biopolymers - chemistry ; Effects ; Fluorescence Resonance Energy Transfer ; Gyration ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins - chemistry ; Ligands ; Macromolecular Substances - chemistry ; Material concentration ; Molecular Weight ; Molecules ; Polymers ; Protein Binding ; Proteins ; RNA ; Solutions ; Solvents ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (13), p.4874-4879</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 1, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</citedby><cites>FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771188$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771188$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24639500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Koenig, Iwo</creatorcontrib><creatorcontrib>Borgia, Madeleine B.</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Zosel, Franziska</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.</description><subject>Amino Acid Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biopolymers</subject><subject>Biopolymers - chemistry</subject><subject>Effects</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gyration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Ligands</subject><subject>Macromolecular Substances - chemistry</subject><subject>Material concentration</subject><subject>Molecular Weight</subject><subject>Molecules</subject><subject>Polymers</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>RNA</subject><subject>Solutions</subject><subject>Solvents</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2P0zAQQC0EYrsLZ05AJC5csuvxZ3xBQisWkFbisOzZchy7uEriYCdF_fe4amkBX2x53jzPeBB6BfgasKQ302jyNVBCBOzXE7QCrKAWTOGnaIUxkXXDCLtAlzlvMMaKN_g5uiBMUMUxXiH7EMZ17-oh9s4uvavy5OycYrZx2lXJbZ3pczXFfje4VDnvSzRX0VddyDF1LrmumlKcXRhzFcbKpvirK3du3IYUx8GNc36BnvlicS-P-xV6vPv0_fZLff_t89fbj_e15VzOtWygU7ITHlNvfNtSIihtlOpa4ZUlnWwkllxxpqClWLFyaGXDqBWKAQZDr9CHg3da2sF1trydTK-nFAaTdjqaoP-NjOGHXsetpkpKIngRvD8KUvy5uDzrIWTr-t6MLi5ZAwfGKCdSFPTdf-gmLmks7e0pTlQplRTq5kCVb8k5OX8qBrDeD1DvB6jPAywZb_7u4cT_mVgB3h6BfeZJB1AsmjWSFeL1gdjkOaazgUoJ0DRngzdRm3UKWT8-EAwCY2CUCqC_AYWftTE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Soranno, Andrea</creator><creator>Koenig, Iwo</creator><creator>Borgia, Madeleine B.</creator><creator>Hofmann, Hagen</creator><creator>Zosel, Franziska</creator><creator>Nettels, Daniel</creator><creator>Schuler, Benjamin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</title><author>Soranno, Andrea ; Koenig, Iwo ; Borgia, Madeleine B. ; Hofmann, Hagen ; Zosel, Franziska ; Nettels, Daniel ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biopolymers</topic><topic>Biopolymers - chemistry</topic><topic>Effects</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gyration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Ligands</topic><topic>Macromolecular Substances - chemistry</topic><topic>Material concentration</topic><topic>Molecular Weight</topic><topic>Molecules</topic><topic>Polymers</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>RNA</topic><topic>Solutions</topic><topic>Solvents</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Koenig, Iwo</creatorcontrib><creatorcontrib>Borgia, Madeleine B.</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Zosel, Franziska</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soranno, Andrea</au><au>Koenig, Iwo</au><au>Borgia, Madeleine B.</au><au>Hofmann, Hagen</au><au>Zosel, Franziska</au><au>Nettels, Daniel</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>111</volume><issue>13</issue><spage>4874</spage><epage>4879</epage><pages>4874-4879</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24639500</pmid><doi>10.1073/pnas.1322611111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (13), p.4874-4879 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977265 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Biochemistry Biological Sciences Biopolymers Biopolymers - chemistry Effects Fluorescence Resonance Energy Transfer Gyration Hydrophobic and Hydrophilic Interactions Intrinsically Disordered Proteins - chemistry Ligands Macromolecular Substances - chemistry Material concentration Molecular Weight Molecules Polymers Protein Binding Proteins RNA Solutions Solvents Spectroscopy Spectrum analysis Spectrum Analysis - methods |
title | Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20spectroscopy%20reveals%20polymer%20effects%20of%20disordered%20proteins%20in%20crowded%20environments&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soranno,%20Andrea&rft.date=2014-04-01&rft.volume=111&rft.issue=13&rft.spage=4874&rft.epage=4879&rft.pages=4874-4879&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1322611111&rft_dat=%3Cjstor_pubme%3E23771188%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515290752&rft_id=info:pmid/24639500&rft_jstor_id=23771188&rfr_iscdi=true |