Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments

Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (13), p.4874-4879
Hauptverfasser: Soranno, Andrea, Koenig, Iwo, Borgia, Madeleine B., Hofmann, Hagen, Zosel, Franziska, Nettels, Daniel, Schuler, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4879
container_issue 13
container_start_page 4874
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Soranno, Andrea
Koenig, Iwo
Borgia, Madeleine B.
Hofmann, Hagen
Zosel, Franziska
Nettels, Daniel
Schuler, Benjamin
description Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.
doi_str_mv 10.1073/pnas.1322611111
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771188</jstor_id><sourcerecordid>23771188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</originalsourceid><addsrcrecordid>eNpdkU2P0zAQQC0EYrsLZ05AJC5csuvxZ3xBQisWkFbisOzZchy7uEriYCdF_fe4amkBX2x53jzPeBB6BfgasKQ302jyNVBCBOzXE7QCrKAWTOGnaIUxkXXDCLtAlzlvMMaKN_g5uiBMUMUxXiH7EMZ17-oh9s4uvavy5OycYrZx2lXJbZ3pczXFfje4VDnvSzRX0VddyDF1LrmumlKcXRhzFcbKpvirK3du3IYUx8GNc36BnvlicS-P-xV6vPv0_fZLff_t89fbj_e15VzOtWygU7ITHlNvfNtSIihtlOpa4ZUlnWwkllxxpqClWLFyaGXDqBWKAQZDr9CHg3da2sF1trydTK-nFAaTdjqaoP-NjOGHXsetpkpKIngRvD8KUvy5uDzrIWTr-t6MLi5ZAwfGKCdSFPTdf-gmLmks7e0pTlQplRTq5kCVb8k5OX8qBrDeD1DvB6jPAywZb_7u4cT_mVgB3h6BfeZJB1AsmjWSFeL1gdjkOaazgUoJ0DRngzdRm3UKWT8-EAwCY2CUCqC_AYWftTE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515290752</pqid></control><display><type>article</type><title>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soranno, Andrea ; Koenig, Iwo ; Borgia, Madeleine B. ; Hofmann, Hagen ; Zosel, Franziska ; Nettels, Daniel ; Schuler, Benjamin</creator><creatorcontrib>Soranno, Andrea ; Koenig, Iwo ; Borgia, Madeleine B. ; Hofmann, Hagen ; Zosel, Franziska ; Nettels, Daniel ; Schuler, Benjamin</creatorcontrib><description>Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1322611111</identifier><identifier>PMID: 24639500</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Biochemistry ; Biological Sciences ; Biopolymers ; Biopolymers - chemistry ; Effects ; Fluorescence Resonance Energy Transfer ; Gyration ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins - chemistry ; Ligands ; Macromolecular Substances - chemistry ; Material concentration ; Molecular Weight ; Molecules ; Polymers ; Protein Binding ; Proteins ; RNA ; Solutions ; Solvents ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (13), p.4874-4879</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 1, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</citedby><cites>FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771188$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771188$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24639500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Koenig, Iwo</creatorcontrib><creatorcontrib>Borgia, Madeleine B.</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Zosel, Franziska</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><title>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.</description><subject>Amino Acid Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biopolymers</subject><subject>Biopolymers - chemistry</subject><subject>Effects</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gyration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Ligands</subject><subject>Macromolecular Substances - chemistry</subject><subject>Material concentration</subject><subject>Molecular Weight</subject><subject>Molecules</subject><subject>Polymers</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>RNA</subject><subject>Solutions</subject><subject>Solvents</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2P0zAQQC0EYrsLZ05AJC5csuvxZ3xBQisWkFbisOzZchy7uEriYCdF_fe4amkBX2x53jzPeBB6BfgasKQ302jyNVBCBOzXE7QCrKAWTOGnaIUxkXXDCLtAlzlvMMaKN_g5uiBMUMUxXiH7EMZ17-oh9s4uvavy5OycYrZx2lXJbZ3pczXFfje4VDnvSzRX0VddyDF1LrmumlKcXRhzFcbKpvirK3du3IYUx8GNc36BnvlicS-P-xV6vPv0_fZLff_t89fbj_e15VzOtWygU7ITHlNvfNtSIihtlOpa4ZUlnWwkllxxpqClWLFyaGXDqBWKAQZDr9CHg3da2sF1trydTK-nFAaTdjqaoP-NjOGHXsetpkpKIngRvD8KUvy5uDzrIWTr-t6MLi5ZAwfGKCdSFPTdf-gmLmks7e0pTlQplRTq5kCVb8k5OX8qBrDeD1DvB6jPAywZb_7u4cT_mVgB3h6BfeZJB1AsmjWSFeL1gdjkOaazgUoJ0DRngzdRm3UKWT8-EAwCY2CUCqC_AYWftTE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Soranno, Andrea</creator><creator>Koenig, Iwo</creator><creator>Borgia, Madeleine B.</creator><creator>Hofmann, Hagen</creator><creator>Zosel, Franziska</creator><creator>Nettels, Daniel</creator><creator>Schuler, Benjamin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</title><author>Soranno, Andrea ; Koenig, Iwo ; Borgia, Madeleine B. ; Hofmann, Hagen ; Zosel, Franziska ; Nettels, Daniel ; Schuler, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-781d97d6f03fafbb32633899db6f9c2d78707595491b3094549b7843c694101a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biopolymers</topic><topic>Biopolymers - chemistry</topic><topic>Effects</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gyration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Ligands</topic><topic>Macromolecular Substances - chemistry</topic><topic>Material concentration</topic><topic>Molecular Weight</topic><topic>Molecules</topic><topic>Polymers</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>RNA</topic><topic>Solutions</topic><topic>Solvents</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soranno, Andrea</creatorcontrib><creatorcontrib>Koenig, Iwo</creatorcontrib><creatorcontrib>Borgia, Madeleine B.</creatorcontrib><creatorcontrib>Hofmann, Hagen</creatorcontrib><creatorcontrib>Zosel, Franziska</creatorcontrib><creatorcontrib>Nettels, Daniel</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soranno, Andrea</au><au>Koenig, Iwo</au><au>Borgia, Madeleine B.</au><au>Hofmann, Hagen</au><au>Zosel, Franziska</au><au>Nettels, Daniel</au><au>Schuler, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>111</volume><issue>13</issue><spage>4874</spage><epage>4879</epage><pages>4874-4879</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24639500</pmid><doi>10.1073/pnas.1322611111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (13), p.4874-4879
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977265
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Biochemistry
Biological Sciences
Biopolymers
Biopolymers - chemistry
Effects
Fluorescence Resonance Energy Transfer
Gyration
Hydrophobic and Hydrophilic Interactions
Intrinsically Disordered Proteins - chemistry
Ligands
Macromolecular Substances - chemistry
Material concentration
Molecular Weight
Molecules
Polymers
Protein Binding
Proteins
RNA
Solutions
Solvents
Spectroscopy
Spectrum analysis
Spectrum Analysis - methods
title Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20spectroscopy%20reveals%20polymer%20effects%20of%20disordered%20proteins%20in%20crowded%20environments&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soranno,%20Andrea&rft.date=2014-04-01&rft.volume=111&rft.issue=13&rft.spage=4874&rft.epage=4879&rft.pages=4874-4879&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1322611111&rft_dat=%3Cjstor_pubme%3E23771188%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515290752&rft_id=info:pmid/24639500&rft_jstor_id=23771188&rfr_iscdi=true