Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy
Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-02, Vol.5 (1), p.3286-3286, Article 3286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3286 |
---|---|
container_issue | 1 |
container_start_page | 3286 |
container_title | Nature communications |
container_volume | 5 |
creator | Fidler, Andrew F. Singh, Ved P. Long, Phillip D. Dahlberg, Peter D. Engel, Gregory S. |
description | Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.
Nonlinear chiral optical activity is difficult to measure because of weak signal amidst strong achiral background. Here, the authors perform a nonlinear chiral two-dimensional spectroscopic mapping of light-harvesting complex 2 during photoexcitation and observe exciton delocalization. |
doi_str_mv | 10.1038/ncomms4286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3976994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499123435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-438888d778bcabd63202c50ddaede6783ae0cd4a0432cf5e11919f72e09628263</originalsourceid><addsrcrecordid>eNplkVtPHSEUhYlpU431pT_ATOJL02aU21x4adLYeklMfLHPhAN7HAwDU-Cop_3zRY_VY7tfgKyPtRdshD4QfEgw64-8DtOUOO3bLbRDMSc16Sh7s7HfRnsp3eBSTJCe83dom_KmqJzvoN_fVl5NVlcuaOXsL5Vt8FUYKnCgcwy-SHCvbV4L1lfzGHJIK59HyEUs7WcH95CqCLegHJjqzuax0qONylX5LtTGTuBTuV7OaX60TTrMq_fo7aBcgr2ndRf9OPl-dXxWX1yenh9_vag15zTXnPWlTNf1C60WpmUUU91gYxQYaLueKcDacIU5o3pogBBBxNBRwKKlPW3ZLvqy9p2XiwmMBp9LNDlHO6m4kkFZ-VrxdpTX4VYy0bVC8GLw8ckghp9LSFlONmlwTnkIyyQJF4JQxllT0IN_0JuwjOXljxTvWNNhUahPa0qXr0gRhucwBMuHscqXsRZ4fzP-M_p3iAX4vAZSkfw1xI2e_9v9AXYmsYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494735709</pqid></control><display><type>article</type><title>Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy</title><source>Springer Open Access</source><creator>Fidler, Andrew F. ; Singh, Ved P. ; Long, Phillip D. ; Dahlberg, Peter D. ; Engel, Gregory S.</creator><creatorcontrib>Fidler, Andrew F. ; Singh, Ved P. ; Long, Phillip D. ; Dahlberg, Peter D. ; Engel, Gregory S.</creatorcontrib><description>Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.
Nonlinear chiral optical activity is difficult to measure because of weak signal amidst strong achiral background. Here, the authors perform a nonlinear chiral two-dimensional spectroscopic mapping of light-harvesting complex 2 during photoexcitation and observe exciton delocalization.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4286</identifier><identifier>PMID: 24504144</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1111/55 ; Bacteria ; Bacterial Proteins - metabolism ; Electrons ; Experiments ; Humanities and Social Sciences ; Light-Harvesting Protein Complexes - metabolism ; Localization ; multidisciplinary ; Photosynthesis ; Proteins ; Rhodobacter sphaeroides - metabolism ; Science ; Science (multidisciplinary) ; Spectrum Analysis - methods</subject><ispartof>Nature communications, 2014-02, Vol.5 (1), p.3286-3286, Article 3286</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-438888d778bcabd63202c50ddaede6783ae0cd4a0432cf5e11919f72e09628263</citedby><cites>FETCH-LOGICAL-c442t-438888d778bcabd63202c50ddaede6783ae0cd4a0432cf5e11919f72e09628263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976994/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976994/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4286$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24504144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fidler, Andrew F.</creatorcontrib><creatorcontrib>Singh, Ved P.</creatorcontrib><creatorcontrib>Long, Phillip D.</creatorcontrib><creatorcontrib>Dahlberg, Peter D.</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><title>Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.
Nonlinear chiral optical activity is difficult to measure because of weak signal amidst strong achiral background. Here, the authors perform a nonlinear chiral two-dimensional spectroscopic mapping of light-harvesting complex 2 during photoexcitation and observe exciton delocalization.</description><subject>639/624/1111/55</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Electrons</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Rhodobacter sphaeroides - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum Analysis - methods</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVtPHSEUhYlpU431pT_ATOJL02aU21x4adLYeklMfLHPhAN7HAwDU-Cop_3zRY_VY7tfgKyPtRdshD4QfEgw64-8DtOUOO3bLbRDMSc16Sh7s7HfRnsp3eBSTJCe83dom_KmqJzvoN_fVl5NVlcuaOXsL5Vt8FUYKnCgcwy-SHCvbV4L1lfzGHJIK59HyEUs7WcH95CqCLegHJjqzuax0qONylX5LtTGTuBTuV7OaX60TTrMq_fo7aBcgr2ndRf9OPl-dXxWX1yenh9_vag15zTXnPWlTNf1C60WpmUUU91gYxQYaLueKcDacIU5o3pogBBBxNBRwKKlPW3ZLvqy9p2XiwmMBp9LNDlHO6m4kkFZ-VrxdpTX4VYy0bVC8GLw8ckghp9LSFlONmlwTnkIyyQJF4JQxllT0IN_0JuwjOXljxTvWNNhUahPa0qXr0gRhucwBMuHscqXsRZ4fzP-M_p3iAX4vAZSkfw1xI2e_9v9AXYmsYg</recordid><startdate>20140206</startdate><enddate>20140206</enddate><creator>Fidler, Andrew F.</creator><creator>Singh, Ved P.</creator><creator>Long, Phillip D.</creator><creator>Dahlberg, Peter D.</creator><creator>Engel, Gregory S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140206</creationdate><title>Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy</title><author>Fidler, Andrew F. ; Singh, Ved P. ; Long, Phillip D. ; Dahlberg, Peter D. ; Engel, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-438888d778bcabd63202c50ddaede6783ae0cd4a0432cf5e11919f72e09628263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/624/1111/55</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Electrons</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Rhodobacter sphaeroides - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fidler, Andrew F.</creatorcontrib><creatorcontrib>Singh, Ved P.</creatorcontrib><creatorcontrib>Long, Phillip D.</creatorcontrib><creatorcontrib>Dahlberg, Peter D.</creatorcontrib><creatorcontrib>Engel, Gregory S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fidler, Andrew F.</au><au>Singh, Ved P.</au><au>Long, Phillip D.</au><au>Dahlberg, Peter D.</au><au>Engel, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-02-06</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3286</spage><epage>3286</epage><pages>3286-3286</pages><artnum>3286</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.
Nonlinear chiral optical activity is difficult to measure because of weak signal amidst strong achiral background. Here, the authors perform a nonlinear chiral two-dimensional spectroscopic mapping of light-harvesting complex 2 during photoexcitation and observe exciton delocalization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24504144</pmid><doi>10.1038/ncomms4286</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-02, Vol.5 (1), p.3286-3286, Article 3286 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3976994 |
source | Springer Open Access |
subjects | 639/624/1111/55 Bacteria Bacterial Proteins - metabolism Electrons Experiments Humanities and Social Sciences Light-Harvesting Protein Complexes - metabolism Localization multidisciplinary Photosynthesis Proteins Rhodobacter sphaeroides - metabolism Science Science (multidisciplinary) Spectrum Analysis - methods |
title | Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20localization%20of%20electronic%20excitation%20in%20photosynthetic%20complexes%20revealed%20with%20chiral%20two-dimensional%20spectroscopy&rft.jtitle=Nature%20communications&rft.au=Fidler,%20Andrew%20F.&rft.date=2014-02-06&rft.volume=5&rft.issue=1&rft.spage=3286&rft.epage=3286&rft.pages=3286-3286&rft.artnum=3286&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4286&rft_dat=%3Cproquest_C6C%3E1499123435%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494735709&rft_id=info:pmid/24504144&rfr_iscdi=true |