Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury
Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediate...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2014-03, Vol.5 (3), p.e1105-e1105 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1105 |
---|---|
container_issue | 3 |
container_start_page | e1105 |
container_title | Cell death & disease |
container_volume | 5 |
creator | Kim, S Y Shim, M S Kim, K-Y Weinreb, R N Wheeler, L A Ju, W-K |
description | Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis of these observations, our findings suggest that CsA-mediated CypD inhibition may provide a promising therapeutic potential for protecting RGCs against ischemic injury-mediated mitochondrial dysfunction. |
doi_str_mv | 10.1038/cddis.2014.80 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3973219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790964652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-329ae7c69ee3d689fb7508c2ae254ab6b3e9ddbd2eca5b26eeaba212cc959ea63</originalsourceid><addsrcrecordid>eNptkU1r3DAQhk1paUKSY69F0Esv3sqSrbUuhZB-BQK5NGchybO2FllyJXth_0R_c2ezSdiW6iJp5pl3voriXUVXFeXtJ9t1Lq8YrepVS18V54zWVVm3rXx98j4rrnLeUjycU9aIt8UZqwV-OD8vft-GwRk3uxhI3BC7tz5Og_MukC_E7I-GPMWEhmsypTjGGTJJMLugPel16P0h1oL3JC9p53ZoxsApwQ4CUj0Z3RztEEOXHPq0nyHpx4So6bIdYHQW39sl7S-LNxvtM1w93RfFw7evP29-lHf3329vru9K2zR8LjmTGtZWSADeiVZuzLqhrWUaWFNrIwwH2XWmY2B1Y5gA0EazilkrGwla8Ivi81F3WswIncVKk_ZqSm7Uaa-idupvT3CD6uNOcbnmrJIo8PFJIMVfC-RZjdgKDkEHiEtW1VpSKWrRMEQ__INu45JwegeqFYzXUjZIlUfKpphzgs1LMRVVh2Wrx2Wrw7JVS5F_f9rBC_28WgRWRyCjK_SQTtL-V_EPCjm69g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786234995</pqid></control><display><type>article</type><title>Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, S Y ; Shim, M S ; Kim, K-Y ; Weinreb, R N ; Wheeler, L A ; Ju, W-K</creator><creatorcontrib>Kim, S Y ; Shim, M S ; Kim, K-Y ; Weinreb, R N ; Wheeler, L A ; Ju, W-K</creatorcontrib><description>Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis of these observations, our findings suggest that CsA-mediated CypD inhibition may provide a promising therapeutic potential for protecting RGCs against ischemic injury-mediated mitochondrial dysfunction.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2014.80</identifier><identifier>PMID: 24603333</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/340 ; 631/80/642/333 ; 631/80/82/23 ; 692/699/3161/3175 ; Animals ; Antibodies ; Apoptosis - drug effects ; bcl-Associated Death Protein - metabolism ; bcl-X Protein - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Caspase 3 - metabolism ; Cell Biology ; Cell Culture ; Cell Survival - drug effects ; Cyclophilins - antagonists & inhibitors ; Cyclophilins - metabolism ; Cyclosporine - pharmacology ; Cytoprotection ; Disease Models, Animal ; DNA, Mitochondrial - metabolism ; DNA-Binding Proteins - metabolism ; Female ; High Mobility Group Proteins - metabolism ; Immunology ; Intraocular Pressure - drug effects ; Ischemia - enzymology ; Ischemia - pathology ; Ischemia - physiopathology ; Ischemia - prevention & control ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mitochondria - drug effects ; Mitochondria - enzymology ; Mitochondria - pathology ; Mitochondrial Membrane Transport Proteins - drug effects ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Permeability Transition Pore ; Neuroprotective Agents - pharmacology ; Ocular Hypertension - enzymology ; Ocular Hypertension - physiopathology ; Ocular Hypertension - prevention & control ; Original ; original-article ; Peptidyl-Prolyl Isomerase F ; Phosphorylation ; Retinal Diseases - enzymology ; Retinal Diseases - pathology ; Retinal Diseases - physiopathology ; Retinal Diseases - prevention & control ; Retinal Ganglion Cells - drug effects ; Retinal Ganglion Cells - enzymology ; Retinal Ganglion Cells - pathology ; Time Factors</subject><ispartof>Cell death & disease, 2014-03, Vol.5 (3), p.e1105-e1105</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Mar 2014</rights><rights>Copyright © 2014 Macmillan Publishers Limited 2014 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-329ae7c69ee3d689fb7508c2ae254ab6b3e9ddbd2eca5b26eeaba212cc959ea63</citedby><cites>FETCH-LOGICAL-c553t-329ae7c69ee3d689fb7508c2ae254ab6b3e9ddbd2eca5b26eeaba212cc959ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24603333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, S Y</creatorcontrib><creatorcontrib>Shim, M S</creatorcontrib><creatorcontrib>Kim, K-Y</creatorcontrib><creatorcontrib>Weinreb, R N</creatorcontrib><creatorcontrib>Wheeler, L A</creatorcontrib><creatorcontrib>Ju, W-K</creatorcontrib><title>Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury</title><title>Cell death & disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis of these observations, our findings suggest that CsA-mediated CypD inhibition may provide a promising therapeutic potential for protecting RGCs against ischemic injury-mediated mitochondrial dysfunction.</description><subject>631/378/340</subject><subject>631/80/642/333</subject><subject>631/80/82/23</subject><subject>692/699/3161/3175</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis - drug effects</subject><subject>bcl-Associated Death Protein - metabolism</subject><subject>bcl-X Protein - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Survival - drug effects</subject><subject>Cyclophilins - antagonists & inhibitors</subject><subject>Cyclophilins - metabolism</subject><subject>Cyclosporine - pharmacology</subject><subject>Cytoprotection</subject><subject>Disease Models, Animal</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>Immunology</subject><subject>Intraocular Pressure - drug effects</subject><subject>Ischemia - enzymology</subject><subject>Ischemia - pathology</subject><subject>Ischemia - physiopathology</subject><subject>Ischemia - prevention & control</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Membrane Transport Proteins - drug effects</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Permeability Transition Pore</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Ocular Hypertension - enzymology</subject><subject>Ocular Hypertension - physiopathology</subject><subject>Ocular Hypertension - prevention & control</subject><subject>Original</subject><subject>original-article</subject><subject>Peptidyl-Prolyl Isomerase F</subject><subject>Phosphorylation</subject><subject>Retinal Diseases - enzymology</subject><subject>Retinal Diseases - pathology</subject><subject>Retinal Diseases - physiopathology</subject><subject>Retinal Diseases - prevention & control</subject><subject>Retinal Ganglion Cells - drug effects</subject><subject>Retinal Ganglion Cells - enzymology</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Time Factors</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkU1r3DAQhk1paUKSY69F0Esv3sqSrbUuhZB-BQK5NGchybO2FllyJXth_0R_c2ezSdiW6iJp5pl3voriXUVXFeXtJ9t1Lq8YrepVS18V54zWVVm3rXx98j4rrnLeUjycU9aIt8UZqwV-OD8vft-GwRk3uxhI3BC7tz5Og_MukC_E7I-GPMWEhmsypTjGGTJJMLugPel16P0h1oL3JC9p53ZoxsApwQ4CUj0Z3RztEEOXHPq0nyHpx4So6bIdYHQW39sl7S-LNxvtM1w93RfFw7evP29-lHf3329vru9K2zR8LjmTGtZWSADeiVZuzLqhrWUaWFNrIwwH2XWmY2B1Y5gA0EazilkrGwla8Ivi81F3WswIncVKk_ZqSm7Uaa-idupvT3CD6uNOcbnmrJIo8PFJIMVfC-RZjdgKDkEHiEtW1VpSKWrRMEQ__INu45JwegeqFYzXUjZIlUfKpphzgs1LMRVVh2Wrx2Wrw7JVS5F_f9rBC_28WgRWRyCjK_SQTtL-V_EPCjm69g</recordid><startdate>20140306</startdate><enddate>20140306</enddate><creator>Kim, S Y</creator><creator>Shim, M S</creator><creator>Kim, K-Y</creator><creator>Weinreb, R N</creator><creator>Wheeler, L A</creator><creator>Ju, W-K</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TO</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20140306</creationdate><title>Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury</title><author>Kim, S Y ; Shim, M S ; Kim, K-Y ; Weinreb, R N ; Wheeler, L A ; Ju, W-K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-329ae7c69ee3d689fb7508c2ae254ab6b3e9ddbd2eca5b26eeaba212cc959ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/378/340</topic><topic>631/80/642/333</topic><topic>631/80/82/23</topic><topic>692/699/3161/3175</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis - drug effects</topic><topic>bcl-Associated Death Protein - metabolism</topic><topic>bcl-X Protein - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Survival - drug effects</topic><topic>Cyclophilins - antagonists & inhibitors</topic><topic>Cyclophilins - metabolism</topic><topic>Cyclosporine - pharmacology</topic><topic>Cytoprotection</topic><topic>Disease Models, Animal</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>Immunology</topic><topic>Intraocular Pressure - drug effects</topic><topic>Ischemia - enzymology</topic><topic>Ischemia - pathology</topic><topic>Ischemia - physiopathology</topic><topic>Ischemia - prevention & control</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Membrane Transport Proteins - drug effects</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Permeability Transition Pore</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Ocular Hypertension - enzymology</topic><topic>Ocular Hypertension - physiopathology</topic><topic>Ocular Hypertension - prevention & control</topic><topic>Original</topic><topic>original-article</topic><topic>Peptidyl-Prolyl Isomerase F</topic><topic>Phosphorylation</topic><topic>Retinal Diseases - enzymology</topic><topic>Retinal Diseases - pathology</topic><topic>Retinal Diseases - physiopathology</topic><topic>Retinal Diseases - prevention & control</topic><topic>Retinal Ganglion Cells - drug effects</topic><topic>Retinal Ganglion Cells - enzymology</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, S Y</creatorcontrib><creatorcontrib>Shim, M S</creatorcontrib><creatorcontrib>Kim, K-Y</creatorcontrib><creatorcontrib>Weinreb, R N</creatorcontrib><creatorcontrib>Wheeler, L A</creatorcontrib><creatorcontrib>Ju, W-K</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death & disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, S Y</au><au>Shim, M S</au><au>Kim, K-Y</au><au>Weinreb, R N</au><au>Wheeler, L A</au><au>Ju, W-K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury</atitle><jtitle>Cell death & disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2014-03-06</date><risdate>2014</risdate><volume>5</volume><issue>3</issue><spage>e1105</spage><epage>e1105</epage><pages>e1105-e1105</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis of these observations, our findings suggest that CsA-mediated CypD inhibition may provide a promising therapeutic potential for protecting RGCs against ischemic injury-mediated mitochondrial dysfunction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24603333</pmid><doi>10.1038/cddis.2014.80</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-4889 |
ispartof | Cell death & disease, 2014-03, Vol.5 (3), p.e1105-e1105 |
issn | 2041-4889 2041-4889 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3973219 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/378/340 631/80/642/333 631/80/82/23 692/699/3161/3175 Animals Antibodies Apoptosis - drug effects bcl-Associated Death Protein - metabolism bcl-X Protein - metabolism Biochemistry Biomedical and Life Sciences Caspase 3 - metabolism Cell Biology Cell Culture Cell Survival - drug effects Cyclophilins - antagonists & inhibitors Cyclophilins - metabolism Cyclosporine - pharmacology Cytoprotection Disease Models, Animal DNA, Mitochondrial - metabolism DNA-Binding Proteins - metabolism Female High Mobility Group Proteins - metabolism Immunology Intraocular Pressure - drug effects Ischemia - enzymology Ischemia - pathology Ischemia - physiopathology Ischemia - prevention & control Life Sciences Mice Mice, Inbred C57BL Mitochondria - drug effects Mitochondria - enzymology Mitochondria - pathology Mitochondrial Membrane Transport Proteins - drug effects Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Permeability Transition Pore Neuroprotective Agents - pharmacology Ocular Hypertension - enzymology Ocular Hypertension - physiopathology Ocular Hypertension - prevention & control Original original-article Peptidyl-Prolyl Isomerase F Phosphorylation Retinal Diseases - enzymology Retinal Diseases - pathology Retinal Diseases - physiopathology Retinal Diseases - prevention & control Retinal Ganglion Cells - drug effects Retinal Ganglion Cells - enzymology Retinal Ganglion Cells - pathology Time Factors |
title | Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20cyclophilin%20D%20by%20cyclosporin%20A%20promotes%20retinal%20ganglion%20cell%20survival%20by%20preventing%20mitochondrial%20alteration%20in%20ischemic%20injury&rft.jtitle=Cell%20death%20&%20disease&rft.au=Kim,%20S%20Y&rft.date=2014-03-06&rft.volume=5&rft.issue=3&rft.spage=e1105&rft.epage=e1105&rft.pages=e1105-e1105&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2014.80&rft_dat=%3Cproquest_pubme%3E1790964652%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786234995&rft_id=info:pmid/24603333&rfr_iscdi=true |