Controlled release of doxorubicin from pH-responsive microgels

Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2013-03, Vol.9 (3), p.5438-5446
Hauptverfasser: Dadsetan, Mahrokh, Taylor, K. Efua, Yong, Chun, Bajzer, Željko, Lu, Lichun, Yaszemski, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5446
container_issue 3
container_start_page 5438
container_title Acta biomaterialia
container_volume 9
creator Dadsetan, Mahrokh
Taylor, K. Efua
Yong, Chun
Bajzer, Željko
Lu, Lichun
Yaszemski, Michael J.
description Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.
doi_str_mv 10.1016/j.actbio.2012.09.019
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706112004564</els_id><sourcerecordid>S1742706112004564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMo1tc_EJ0_MONN5pHJpiDFFxRcqOuQSW5qynRSkrbovzelPjdmkws559zDF0LOKRQUaHM1L5Redc4XDCgrQBRAxR45oi1vc1437X6aecVyDg0dkeMY5wBlS1l7SEasBMbqqj4i44kfVsH3PZosYI8qYuZtZvybD-vOaTdkNvhFtrzPA8alH6LbYLZwOvgZ9vGUHFjVRzz7vE_Iy-3N8-Q-nz7ePUyup7muWr7KRWVLw2pqSqWh1LThgFozBGbrdKwwaeCtoXWJnRFWQQ2c0q5tRMWSoDwh413uct0t0GhMpVUvl8EtVHiXXjn592Vwr3LmN7IUHAStUkC1C0jFYwxov70U5JannMsdT7nlKUHIxDPZLn7v_TZ9AUyCy53AKi_VLLgoX55SQg1AIX0F_6mecOHGYZBROxw0GhdQr6Tx7v8OH0Mwkv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled release of doxorubicin from pH-responsive microgels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dadsetan, Mahrokh ; Taylor, K. Efua ; Yong, Chun ; Bajzer, Željko ; Lu, Lichun ; Yaszemski, Michael J.</creator><creatorcontrib>Dadsetan, Mahrokh ; Taylor, K. Efua ; Yong, Chun ; Bajzer, Željko ; Lu, Lichun ; Yaszemski, Michael J.</creatorcontrib><description>Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2012.09.019</identifier><identifier>PMID: 23022545</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adsorption ; anticarcinogenic activity ; Cell Death - drug effects ; Chemistry, Pharmaceutical ; Chordoma ; composite polymers ; Delayed-Action Preparations ; Dose-Response Relationship, Drug ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; drug delivery systems ; environmental factors ; Freeze Drying ; Fumarates - chemistry ; Gels - chemistry ; Humans ; hydrocolloids ; Hydrogen-Ion Concentration ; ion exchange ; ionic strength ; mathematical models ; Methacrylates - chemistry ; Microgels ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Microspheres ; Models, Chemical ; Oligo(polyethylene glycol) fumarate ; pH-responsive ; polyethylene glycol ; Polyethylene Glycols - chemistry ; sodium ; Solutions ; temperature ; Time Factors ; toxicity</subject><ispartof>Acta biomaterialia, 2013-03, Vol.9 (3), p.5438-5446</ispartof><rights>2012</rights><rights>Copyright © 2012. Published by Elsevier Ltd.</rights><rights>2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</citedby><cites>FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706112004564$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23022545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dadsetan, Mahrokh</creatorcontrib><creatorcontrib>Taylor, K. Efua</creatorcontrib><creatorcontrib>Yong, Chun</creatorcontrib><creatorcontrib>Bajzer, Željko</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><title>Controlled release of doxorubicin from pH-responsive microgels</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.</description><subject>Adsorption</subject><subject>anticarcinogenic activity</subject><subject>Cell Death - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chordoma</subject><subject>composite polymers</subject><subject>Delayed-Action Preparations</subject><subject>Dose-Response Relationship, Drug</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>drug delivery systems</subject><subject>environmental factors</subject><subject>Freeze Drying</subject><subject>Fumarates - chemistry</subject><subject>Gels - chemistry</subject><subject>Humans</subject><subject>hydrocolloids</subject><subject>Hydrogen-Ion Concentration</subject><subject>ion exchange</subject><subject>ionic strength</subject><subject>mathematical models</subject><subject>Methacrylates - chemistry</subject><subject>Microgels</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microspheres</subject><subject>Models, Chemical</subject><subject>Oligo(polyethylene glycol) fumarate</subject><subject>pH-responsive</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>sodium</subject><subject>Solutions</subject><subject>temperature</subject><subject>Time Factors</subject><subject>toxicity</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLAzEUhYMo1tc_EJ0_MONN5pHJpiDFFxRcqOuQSW5qynRSkrbovzelPjdmkws559zDF0LOKRQUaHM1L5Redc4XDCgrQBRAxR45oi1vc1437X6aecVyDg0dkeMY5wBlS1l7SEasBMbqqj4i44kfVsH3PZosYI8qYuZtZvybD-vOaTdkNvhFtrzPA8alH6LbYLZwOvgZ9vGUHFjVRzz7vE_Iy-3N8-Q-nz7ePUyup7muWr7KRWVLw2pqSqWh1LThgFozBGbrdKwwaeCtoXWJnRFWQQ2c0q5tRMWSoDwh413uct0t0GhMpVUvl8EtVHiXXjn592Vwr3LmN7IUHAStUkC1C0jFYwxov70U5JannMsdT7nlKUHIxDPZLn7v_TZ9AUyCy53AKi_VLLgoX55SQg1AIX0F_6mecOHGYZBROxw0GhdQr6Tx7v8OH0Mwkv4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Dadsetan, Mahrokh</creator><creator>Taylor, K. Efua</creator><creator>Yong, Chun</creator><creator>Bajzer, Željko</creator><creator>Lu, Lichun</creator><creator>Yaszemski, Michael J.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Controlled release of doxorubicin from pH-responsive microgels</title><author>Dadsetan, Mahrokh ; Taylor, K. Efua ; Yong, Chun ; Bajzer, Željko ; Lu, Lichun ; Yaszemski, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>anticarcinogenic activity</topic><topic>Cell Death - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chordoma</topic><topic>composite polymers</topic><topic>Delayed-Action Preparations</topic><topic>Dose-Response Relationship, Drug</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>drug delivery systems</topic><topic>environmental factors</topic><topic>Freeze Drying</topic><topic>Fumarates - chemistry</topic><topic>Gels - chemistry</topic><topic>Humans</topic><topic>hydrocolloids</topic><topic>Hydrogen-Ion Concentration</topic><topic>ion exchange</topic><topic>ionic strength</topic><topic>mathematical models</topic><topic>Methacrylates - chemistry</topic><topic>Microgels</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microspheres</topic><topic>Models, Chemical</topic><topic>Oligo(polyethylene glycol) fumarate</topic><topic>pH-responsive</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>sodium</topic><topic>Solutions</topic><topic>temperature</topic><topic>Time Factors</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadsetan, Mahrokh</creatorcontrib><creatorcontrib>Taylor, K. Efua</creatorcontrib><creatorcontrib>Yong, Chun</creatorcontrib><creatorcontrib>Bajzer, Željko</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadsetan, Mahrokh</au><au>Taylor, K. Efua</au><au>Yong, Chun</au><au>Bajzer, Željko</au><au>Lu, Lichun</au><au>Yaszemski, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled release of doxorubicin from pH-responsive microgels</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>9</volume><issue>3</issue><spage>5438</spage><epage>5446</epage><pages>5438-5446</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23022545</pmid><doi>10.1016/j.actbio.2012.09.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2013-03, Vol.9 (3), p.5438-5446
issn 1742-7061
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970914
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adsorption
anticarcinogenic activity
Cell Death - drug effects
Chemistry, Pharmaceutical
Chordoma
composite polymers
Delayed-Action Preparations
Dose-Response Relationship, Drug
Doxorubicin
Doxorubicin - chemistry
Doxorubicin - pharmacology
drug delivery systems
environmental factors
Freeze Drying
Fumarates - chemistry
Gels - chemistry
Humans
hydrocolloids
Hydrogen-Ion Concentration
ion exchange
ionic strength
mathematical models
Methacrylates - chemistry
Microgels
Microscopy, Confocal
Microscopy, Electron, Scanning
Microspheres
Models, Chemical
Oligo(polyethylene glycol) fumarate
pH-responsive
polyethylene glycol
Polyethylene Glycols - chemistry
sodium
Solutions
temperature
Time Factors
toxicity
title Controlled release of doxorubicin from pH-responsive microgels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20release%20of%20doxorubicin%20from%20pH-responsive%20microgels&rft.jtitle=Acta%20biomaterialia&rft.au=Dadsetan,%20Mahrokh&rft.date=2013-03-01&rft.volume=9&rft.issue=3&rft.spage=5438&rft.epage=5446&rft.pages=5438-5446&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2012.09.019&rft_dat=%3Celsevier_pubme%3ES1742706112004564%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23022545&rft_els_id=S1742706112004564&rfr_iscdi=true