Controlled release of doxorubicin from pH-responsive microgels
Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) i...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2013-03, Vol.9 (3), p.5438-5446 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5446 |
---|---|
container_issue | 3 |
container_start_page | 5438 |
container_title | Acta biomaterialia |
container_volume | 9 |
creator | Dadsetan, Mahrokh Taylor, K. Efua Yong, Chun Bajzer, Željko Lu, Lichun Yaszemski, Michael J. |
description | Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX. |
doi_str_mv | 10.1016/j.actbio.2012.09.019 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706112004564</els_id><sourcerecordid>S1742706112004564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMo1tc_EJ0_MONN5pHJpiDFFxRcqOuQSW5qynRSkrbovzelPjdmkws559zDF0LOKRQUaHM1L5Redc4XDCgrQBRAxR45oi1vc1437X6aecVyDg0dkeMY5wBlS1l7SEasBMbqqj4i44kfVsH3PZosYI8qYuZtZvybD-vOaTdkNvhFtrzPA8alH6LbYLZwOvgZ9vGUHFjVRzz7vE_Iy-3N8-Q-nz7ePUyup7muWr7KRWVLw2pqSqWh1LThgFozBGbrdKwwaeCtoXWJnRFWQQ2c0q5tRMWSoDwh413uct0t0GhMpVUvl8EtVHiXXjn592Vwr3LmN7IUHAStUkC1C0jFYwxov70U5JannMsdT7nlKUHIxDPZLn7v_TZ9AUyCy53AKi_VLLgoX55SQg1AIX0F_6mecOHGYZBROxw0GhdQr6Tx7v8OH0Mwkv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled release of doxorubicin from pH-responsive microgels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dadsetan, Mahrokh ; Taylor, K. Efua ; Yong, Chun ; Bajzer, Željko ; Lu, Lichun ; Yaszemski, Michael J.</creator><creatorcontrib>Dadsetan, Mahrokh ; Taylor, K. Efua ; Yong, Chun ; Bajzer, Željko ; Lu, Lichun ; Yaszemski, Michael J.</creatorcontrib><description>Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2012.09.019</identifier><identifier>PMID: 23022545</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adsorption ; anticarcinogenic activity ; Cell Death - drug effects ; Chemistry, Pharmaceutical ; Chordoma ; composite polymers ; Delayed-Action Preparations ; Dose-Response Relationship, Drug ; Doxorubicin ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; drug delivery systems ; environmental factors ; Freeze Drying ; Fumarates - chemistry ; Gels - chemistry ; Humans ; hydrocolloids ; Hydrogen-Ion Concentration ; ion exchange ; ionic strength ; mathematical models ; Methacrylates - chemistry ; Microgels ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Microspheres ; Models, Chemical ; Oligo(polyethylene glycol) fumarate ; pH-responsive ; polyethylene glycol ; Polyethylene Glycols - chemistry ; sodium ; Solutions ; temperature ; Time Factors ; toxicity</subject><ispartof>Acta biomaterialia, 2013-03, Vol.9 (3), p.5438-5446</ispartof><rights>2012</rights><rights>Copyright © 2012. Published by Elsevier Ltd.</rights><rights>2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</citedby><cites>FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706112004564$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23022545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dadsetan, Mahrokh</creatorcontrib><creatorcontrib>Taylor, K. Efua</creatorcontrib><creatorcontrib>Yong, Chun</creatorcontrib><creatorcontrib>Bajzer, Željko</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><title>Controlled release of doxorubicin from pH-responsive microgels</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.</description><subject>Adsorption</subject><subject>anticarcinogenic activity</subject><subject>Cell Death - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chordoma</subject><subject>composite polymers</subject><subject>Delayed-Action Preparations</subject><subject>Dose-Response Relationship, Drug</subject><subject>Doxorubicin</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>drug delivery systems</subject><subject>environmental factors</subject><subject>Freeze Drying</subject><subject>Fumarates - chemistry</subject><subject>Gels - chemistry</subject><subject>Humans</subject><subject>hydrocolloids</subject><subject>Hydrogen-Ion Concentration</subject><subject>ion exchange</subject><subject>ionic strength</subject><subject>mathematical models</subject><subject>Methacrylates - chemistry</subject><subject>Microgels</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microspheres</subject><subject>Models, Chemical</subject><subject>Oligo(polyethylene glycol) fumarate</subject><subject>pH-responsive</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>sodium</subject><subject>Solutions</subject><subject>temperature</subject><subject>Time Factors</subject><subject>toxicity</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLAzEUhYMo1tc_EJ0_MONN5pHJpiDFFxRcqOuQSW5qynRSkrbovzelPjdmkws559zDF0LOKRQUaHM1L5Redc4XDCgrQBRAxR45oi1vc1437X6aecVyDg0dkeMY5wBlS1l7SEasBMbqqj4i44kfVsH3PZosYI8qYuZtZvybD-vOaTdkNvhFtrzPA8alH6LbYLZwOvgZ9vGUHFjVRzz7vE_Iy-3N8-Q-nz7ePUyup7muWr7KRWVLw2pqSqWh1LThgFozBGbrdKwwaeCtoXWJnRFWQQ2c0q5tRMWSoDwh413uct0t0GhMpVUvl8EtVHiXXjn592Vwr3LmN7IUHAStUkC1C0jFYwxov70U5JannMsdT7nlKUHIxDPZLn7v_TZ9AUyCy53AKi_VLLgoX55SQg1AIX0F_6mecOHGYZBROxw0GhdQr6Tx7v8OH0Mwkv4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Dadsetan, Mahrokh</creator><creator>Taylor, K. Efua</creator><creator>Yong, Chun</creator><creator>Bajzer, Željko</creator><creator>Lu, Lichun</creator><creator>Yaszemski, Michael J.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Controlled release of doxorubicin from pH-responsive microgels</title><author>Dadsetan, Mahrokh ; Taylor, K. Efua ; Yong, Chun ; Bajzer, Željko ; Lu, Lichun ; Yaszemski, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-94f3d251d3ac03c1670ecc2e02f5555f9d2f578d153ebd9fa050711b869425553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>anticarcinogenic activity</topic><topic>Cell Death - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chordoma</topic><topic>composite polymers</topic><topic>Delayed-Action Preparations</topic><topic>Dose-Response Relationship, Drug</topic><topic>Doxorubicin</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>drug delivery systems</topic><topic>environmental factors</topic><topic>Freeze Drying</topic><topic>Fumarates - chemistry</topic><topic>Gels - chemistry</topic><topic>Humans</topic><topic>hydrocolloids</topic><topic>Hydrogen-Ion Concentration</topic><topic>ion exchange</topic><topic>ionic strength</topic><topic>mathematical models</topic><topic>Methacrylates - chemistry</topic><topic>Microgels</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microspheres</topic><topic>Models, Chemical</topic><topic>Oligo(polyethylene glycol) fumarate</topic><topic>pH-responsive</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>sodium</topic><topic>Solutions</topic><topic>temperature</topic><topic>Time Factors</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadsetan, Mahrokh</creatorcontrib><creatorcontrib>Taylor, K. Efua</creatorcontrib><creatorcontrib>Yong, Chun</creatorcontrib><creatorcontrib>Bajzer, Željko</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadsetan, Mahrokh</au><au>Taylor, K. Efua</au><au>Yong, Chun</au><au>Bajzer, Željko</au><au>Lu, Lichun</au><au>Yaszemski, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled release of doxorubicin from pH-responsive microgels</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>9</volume><issue>3</issue><spage>5438</spage><epage>5446</epage><pages>5438-5446</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF–SMA microgels prolonged the cell killing effect of DOX.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23022545</pmid><doi>10.1016/j.actbio.2012.09.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2013-03, Vol.9 (3), p.5438-5446 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970914 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adsorption anticarcinogenic activity Cell Death - drug effects Chemistry, Pharmaceutical Chordoma composite polymers Delayed-Action Preparations Dose-Response Relationship, Drug Doxorubicin Doxorubicin - chemistry Doxorubicin - pharmacology drug delivery systems environmental factors Freeze Drying Fumarates - chemistry Gels - chemistry Humans hydrocolloids Hydrogen-Ion Concentration ion exchange ionic strength mathematical models Methacrylates - chemistry Microgels Microscopy, Confocal Microscopy, Electron, Scanning Microspheres Models, Chemical Oligo(polyethylene glycol) fumarate pH-responsive polyethylene glycol Polyethylene Glycols - chemistry sodium Solutions temperature Time Factors toxicity |
title | Controlled release of doxorubicin from pH-responsive microgels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20release%20of%20doxorubicin%20from%20pH-responsive%20microgels&rft.jtitle=Acta%20biomaterialia&rft.au=Dadsetan,%20Mahrokh&rft.date=2013-03-01&rft.volume=9&rft.issue=3&rft.spage=5438&rft.epage=5446&rft.pages=5438-5446&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2012.09.019&rft_dat=%3Celsevier_pubme%3ES1742706112004564%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23022545&rft_els_id=S1742706112004564&rfr_iscdi=true |