Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels
Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-03, Vol.4 (1), p.4515, Article 4515 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 4515 |
container_title | Scientific reports |
container_volume | 4 |
creator | Seo, Sang Woo Yang, Jae-Seong Cho, Han-Saem Yang, Jina Kim, Seong Cheol Park, Jong Moon Kim, Sanguk Jung, Gyoo Yeol |
description | Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in
Escherichia coli
. Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology. |
doi_str_mv | 10.1038/srep04515 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24682040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</originalsourceid><addsrcrecordid>eNptUV1LwzAUDaK4MffgH5C8KlSbtM3aF2EMv2CoiD6HNLupGW1Skm448cebUR0TzMs93HNyLvdchE5JfEniJL_yDto4zUh2gIY0gIgmlB7u4QEae7-Mw8tokZLiGA1oyvLAx0P09exgoWWn14ClbUptRGedFjVegNeVwVbh5uVxijsnjK9Fp63B2uhO99BBFYrHyjrsN76DJvQltm2nG_3Za4JFBQYwfLQOvN-2alhD7U_QkRK1h_FPHaG325vX2X00f7p7mE3nkUwnrIvyElRYVZKJSGTKFBNMkVIRViqmEiKFKlOZFiUUCaGqiPNESMVyxShkkyIrkhG67n3bVdnAQoIJ29S8dboRbsOt0PwvY_Q7r-yaJ8UkJpQGg_PeQDrrQ-Bq95fEfHsFvrtC0J7tD9spfzMPgote4ANlKnB8aVfOhAD-cfsGPH2Wng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Seo, Sang Woo ; Yang, Jae-Seong ; Cho, Han-Saem ; Yang, Jina ; Kim, Seong Cheol ; Park, Jong Moon ; Kim, Sanguk ; Jung, Gyoo Yeol</creator><creatorcontrib>Seo, Sang Woo ; Yang, Jae-Seong ; Cho, Han-Saem ; Yang, Jina ; Kim, Seong Cheol ; Park, Jong Moon ; Kim, Sanguk ; Jung, Gyoo Yeol</creatorcontrib><description>Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in
Escherichia coli
. Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep04515</identifier><identifier>PMID: 24682040</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/22 ; 38/77 ; 42/47 ; 631/61/185 ; 631/61/318 ; 82/80 ; Algorithms ; Escherichia coli - genetics ; Gene Expression - genetics ; Gene Library ; Humanities and Social Sciences ; Metabolic Engineering - methods ; multidisciplinary ; Peptide Chain Initiation, Translational - genetics ; RNA, Messenger - genetics ; Science</subject><ispartof>Scientific reports, 2014-03, Vol.4 (1), p.4515, Article 4515</ispartof><rights>The Author(s) 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</citedby><cites>FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970122/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970122/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24682040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Sang Woo</creatorcontrib><creatorcontrib>Yang, Jae-Seong</creatorcontrib><creatorcontrib>Cho, Han-Saem</creatorcontrib><creatorcontrib>Yang, Jina</creatorcontrib><creatorcontrib>Kim, Seong Cheol</creatorcontrib><creatorcontrib>Park, Jong Moon</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><title>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in
Escherichia coli
. Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.</description><subject>38/22</subject><subject>38/77</subject><subject>42/47</subject><subject>631/61/185</subject><subject>631/61/318</subject><subject>82/80</subject><subject>Algorithms</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression - genetics</subject><subject>Gene Library</subject><subject>Humanities and Social Sciences</subject><subject>Metabolic Engineering - methods</subject><subject>multidisciplinary</subject><subject>Peptide Chain Initiation, Translational - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNptUV1LwzAUDaK4MffgH5C8KlSbtM3aF2EMv2CoiD6HNLupGW1Skm448cebUR0TzMs93HNyLvdchE5JfEniJL_yDto4zUh2gIY0gIgmlB7u4QEae7-Mw8tokZLiGA1oyvLAx0P09exgoWWn14ClbUptRGedFjVegNeVwVbh5uVxijsnjK9Fp63B2uhO99BBFYrHyjrsN76DJvQltm2nG_3Za4JFBQYwfLQOvN-2alhD7U_QkRK1h_FPHaG325vX2X00f7p7mE3nkUwnrIvyElRYVZKJSGTKFBNMkVIRViqmEiKFKlOZFiUUCaGqiPNESMVyxShkkyIrkhG67n3bVdnAQoIJ29S8dboRbsOt0PwvY_Q7r-yaJ8UkJpQGg_PeQDrrQ-Bq95fEfHsFvrtC0J7tD9spfzMPgote4ANlKnB8aVfOhAD-cfsGPH2Wng</recordid><startdate>20140331</startdate><enddate>20140331</enddate><creator>Seo, Sang Woo</creator><creator>Yang, Jae-Seong</creator><creator>Cho, Han-Saem</creator><creator>Yang, Jina</creator><creator>Kim, Seong Cheol</creator><creator>Park, Jong Moon</creator><creator>Kim, Sanguk</creator><creator>Jung, Gyoo Yeol</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140331</creationdate><title>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</title><author>Seo, Sang Woo ; Yang, Jae-Seong ; Cho, Han-Saem ; Yang, Jina ; Kim, Seong Cheol ; Park, Jong Moon ; Kim, Sanguk ; Jung, Gyoo Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>38/22</topic><topic>38/77</topic><topic>42/47</topic><topic>631/61/185</topic><topic>631/61/318</topic><topic>82/80</topic><topic>Algorithms</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression - genetics</topic><topic>Gene Library</topic><topic>Humanities and Social Sciences</topic><topic>Metabolic Engineering - methods</topic><topic>multidisciplinary</topic><topic>Peptide Chain Initiation, Translational - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Sang Woo</creatorcontrib><creatorcontrib>Yang, Jae-Seong</creatorcontrib><creatorcontrib>Cho, Han-Saem</creatorcontrib><creatorcontrib>Yang, Jina</creatorcontrib><creatorcontrib>Kim, Seong Cheol</creatorcontrib><creatorcontrib>Park, Jong Moon</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Sang Woo</au><au>Yang, Jae-Seong</au><au>Cho, Han-Saem</au><au>Yang, Jina</au><au>Kim, Seong Cheol</au><au>Park, Jong Moon</au><au>Kim, Sanguk</au><au>Jung, Gyoo Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-03-31</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>4515</spage><pages>4515-</pages><artnum>4515</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in
Escherichia coli
. Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24682040</pmid><doi>10.1038/srep04515</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-03, Vol.4 (1), p.4515, Article 4515 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970122 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 38/22 38/77 42/47 631/61/185 631/61/318 82/80 Algorithms Escherichia coli - genetics Gene Expression - genetics Gene Library Humanities and Social Sciences Metabolic Engineering - methods multidisciplinary Peptide Chain Initiation, Translational - genetics RNA, Messenger - genetics Science |
title | Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20combinatorial%20design%20of%20mRNA%20translation%20initiation%20regions%20for%20systematic%20optimization%20of%20gene%20expression%20levels&rft.jtitle=Scientific%20reports&rft.au=Seo,%20Sang%20Woo&rft.date=2014-03-31&rft.volume=4&rft.issue=1&rft.spage=4515&rft.pages=4515-&rft.artnum=4515&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep04515&rft_dat=%3Cpubmed_cross%3E24682040%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24682040&rfr_iscdi=true |