Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels

Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-03, Vol.4 (1), p.4515, Article 4515
Hauptverfasser: Seo, Sang Woo, Yang, Jae-Seong, Cho, Han-Saem, Yang, Jina, Kim, Seong Cheol, Park, Jong Moon, Kim, Sanguk, Jung, Gyoo Yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 4515
container_title Scientific reports
container_volume 4
creator Seo, Sang Woo
Yang, Jae-Seong
Cho, Han-Saem
Yang, Jina
Kim, Seong Cheol
Park, Jong Moon
Kim, Sanguk
Jung, Gyoo Yeol
description Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in Escherichia coli . Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.
doi_str_mv 10.1038/srep04515
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24682040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</originalsourceid><addsrcrecordid>eNptUV1LwzAUDaK4MffgH5C8KlSbtM3aF2EMv2CoiD6HNLupGW1Skm448cebUR0TzMs93HNyLvdchE5JfEniJL_yDto4zUh2gIY0gIgmlB7u4QEae7-Mw8tokZLiGA1oyvLAx0P09exgoWWn14ClbUptRGedFjVegNeVwVbh5uVxijsnjK9Fp63B2uhO99BBFYrHyjrsN76DJvQltm2nG_3Za4JFBQYwfLQOvN-2alhD7U_QkRK1h_FPHaG325vX2X00f7p7mE3nkUwnrIvyElRYVZKJSGTKFBNMkVIRViqmEiKFKlOZFiUUCaGqiPNESMVyxShkkyIrkhG67n3bVdnAQoIJ29S8dboRbsOt0PwvY_Q7r-yaJ8UkJpQGg_PeQDrrQ-Bq95fEfHsFvrtC0J7tD9spfzMPgote4ANlKnB8aVfOhAD-cfsGPH2Wng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Seo, Sang Woo ; Yang, Jae-Seong ; Cho, Han-Saem ; Yang, Jina ; Kim, Seong Cheol ; Park, Jong Moon ; Kim, Sanguk ; Jung, Gyoo Yeol</creator><creatorcontrib>Seo, Sang Woo ; Yang, Jae-Seong ; Cho, Han-Saem ; Yang, Jina ; Kim, Seong Cheol ; Park, Jong Moon ; Kim, Sanguk ; Jung, Gyoo Yeol</creatorcontrib><description>Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in Escherichia coli . Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep04515</identifier><identifier>PMID: 24682040</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/22 ; 38/77 ; 42/47 ; 631/61/185 ; 631/61/318 ; 82/80 ; Algorithms ; Escherichia coli - genetics ; Gene Expression - genetics ; Gene Library ; Humanities and Social Sciences ; Metabolic Engineering - methods ; multidisciplinary ; Peptide Chain Initiation, Translational - genetics ; RNA, Messenger - genetics ; Science</subject><ispartof>Scientific reports, 2014-03, Vol.4 (1), p.4515, Article 4515</ispartof><rights>The Author(s) 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</citedby><cites>FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970122/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970122/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24682040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Sang Woo</creatorcontrib><creatorcontrib>Yang, Jae-Seong</creatorcontrib><creatorcontrib>Cho, Han-Saem</creatorcontrib><creatorcontrib>Yang, Jina</creatorcontrib><creatorcontrib>Kim, Seong Cheol</creatorcontrib><creatorcontrib>Park, Jong Moon</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><title>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in Escherichia coli . Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.</description><subject>38/22</subject><subject>38/77</subject><subject>42/47</subject><subject>631/61/185</subject><subject>631/61/318</subject><subject>82/80</subject><subject>Algorithms</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression - genetics</subject><subject>Gene Library</subject><subject>Humanities and Social Sciences</subject><subject>Metabolic Engineering - methods</subject><subject>multidisciplinary</subject><subject>Peptide Chain Initiation, Translational - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNptUV1LwzAUDaK4MffgH5C8KlSbtM3aF2EMv2CoiD6HNLupGW1Skm448cebUR0TzMs93HNyLvdchE5JfEniJL_yDto4zUh2gIY0gIgmlB7u4QEae7-Mw8tokZLiGA1oyvLAx0P09exgoWWn14ClbUptRGedFjVegNeVwVbh5uVxijsnjK9Fp63B2uhO99BBFYrHyjrsN76DJvQltm2nG_3Za4JFBQYwfLQOvN-2alhD7U_QkRK1h_FPHaG325vX2X00f7p7mE3nkUwnrIvyElRYVZKJSGTKFBNMkVIRViqmEiKFKlOZFiUUCaGqiPNESMVyxShkkyIrkhG67n3bVdnAQoIJ29S8dboRbsOt0PwvY_Q7r-yaJ8UkJpQGg_PeQDrrQ-Bq95fEfHsFvrtC0J7tD9spfzMPgote4ANlKnB8aVfOhAD-cfsGPH2Wng</recordid><startdate>20140331</startdate><enddate>20140331</enddate><creator>Seo, Sang Woo</creator><creator>Yang, Jae-Seong</creator><creator>Cho, Han-Saem</creator><creator>Yang, Jina</creator><creator>Kim, Seong Cheol</creator><creator>Park, Jong Moon</creator><creator>Kim, Sanguk</creator><creator>Jung, Gyoo Yeol</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140331</creationdate><title>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</title><author>Seo, Sang Woo ; Yang, Jae-Seong ; Cho, Han-Saem ; Yang, Jina ; Kim, Seong Cheol ; Park, Jong Moon ; Kim, Sanguk ; Jung, Gyoo Yeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-8bef103c17a3c46f6a6f1bf16bf6f31cafb4c49be9312f9083acf68f62e579593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>38/22</topic><topic>38/77</topic><topic>42/47</topic><topic>631/61/185</topic><topic>631/61/318</topic><topic>82/80</topic><topic>Algorithms</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression - genetics</topic><topic>Gene Library</topic><topic>Humanities and Social Sciences</topic><topic>Metabolic Engineering - methods</topic><topic>multidisciplinary</topic><topic>Peptide Chain Initiation, Translational - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Sang Woo</creatorcontrib><creatorcontrib>Yang, Jae-Seong</creatorcontrib><creatorcontrib>Cho, Han-Saem</creatorcontrib><creatorcontrib>Yang, Jina</creatorcontrib><creatorcontrib>Kim, Seong Cheol</creatorcontrib><creatorcontrib>Park, Jong Moon</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Sang Woo</au><au>Yang, Jae-Seong</au><au>Cho, Han-Saem</au><au>Yang, Jina</au><au>Kim, Seong Cheol</au><au>Park, Jong Moon</au><au>Kim, Sanguk</au><au>Jung, Gyoo Yeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-03-31</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>4515</spage><pages>4515-</pages><artnum>4515</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires searching an unnecessarily large number of variants and often results in searching a narrow range of expression levels which are out of optimal level. Here, we developed a predictive combinatorial design method, called UTR Library Designer, which systematically searches a large combinatorial space of expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we successfully enhanced lysine and hydrogen production in Escherichia coli . Our method significantly reduced the number of variants to be explored for covering large combinatorial space and efficiently enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic biology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24682040</pmid><doi>10.1038/srep04515</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-03, Vol.4 (1), p.4515, Article 4515
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970122
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 38/22
38/77
42/47
631/61/185
631/61/318
82/80
Algorithms
Escherichia coli - genetics
Gene Expression - genetics
Gene Library
Humanities and Social Sciences
Metabolic Engineering - methods
multidisciplinary
Peptide Chain Initiation, Translational - genetics
RNA, Messenger - genetics
Science
title Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20combinatorial%20design%20of%20mRNA%20translation%20initiation%20regions%20for%20systematic%20optimization%20of%20gene%20expression%20levels&rft.jtitle=Scientific%20reports&rft.au=Seo,%20Sang%20Woo&rft.date=2014-03-31&rft.volume=4&rft.issue=1&rft.spage=4515&rft.pages=4515-&rft.artnum=4515&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep04515&rft_dat=%3Cpubmed_cross%3E24682040%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24682040&rfr_iscdi=true