Metallo-β-lactamase structure and function
β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observa...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2013-01, Vol.1277 (1), p.91-104 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1277 |
creator | Palzkill, Timothy |
description | β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes. |
doi_str_mv | 10.1111/j.1749-6632.2012.06796.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323232498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</originalsourceid><addsrcrecordid>eNqNkN9KwzAUh4Mobk5fQXYpSGvzp0lzI4yhU5hTUBGvDmmaamfXatLq9lo-iM9k6-bUO5OLBM7vfCf5EOrjwMfNOpr6WDDpcU6JTwJM_IALyf35BuquC5uoGwRCeJEktIN2nJsGTTJiYht1CMWcUhZ10eGFqVSel97Hu5crXamZcqbvKlvrqramr4qkn9aFrrKy2EVbqcqd2VudPXR7enIzPPPGl6Pz4WDs6ZBx7sVSqjDRgpkUy4hIQmKhdZKaOBJUipAlghGjE00ibhjDnAjN4jimLKE4wJj20PGS-1zHM5NoU1RW5fBss5myCyhVBn8rRfYID-UrNPSmP2wAByuALV9q4yqYZU6bPFeFKWsHmJJ2Mxk10WgZ1bZ0zpp0PQYH0LqGKbRKoVUKrWv4cg3zpnX_9zPXjd9yf_7xluVm8W8wTO4H1-21AXhLQOYqM18DlH0CLqgI4W4yAiGZvMKSwpB-AvdXnVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323232498</pqid></control><display><type>article</type><title>Metallo-β-lactamase structure and function</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Palzkill, Timothy</creator><creatorcontrib>Palzkill, Timothy</creatorcontrib><description>β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2012.06796.x</identifier><identifier>PMID: 23163348</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>antibiotic resistance ; Antiinfectives and antibacterials ; Bacteria ; beta-Lactamases - chemistry ; beta-Lactamases - classification ; beta-Lactamases - metabolism ; Blocking ; carbapenem ; Catalysis ; Catalytic Domain ; Drugs ; Enzymes ; Genes ; Inhibitors ; Metalloendopeptidases - chemistry ; Metalloendopeptidases - classification ; Metalloendopeptidases - metabolism ; Mutagenesis ; Protein Binding ; Substrate Specificity ; Zinc ; zinc metallo-enzyme ; β-lactamase</subject><ispartof>Annals of the New York Academy of Sciences, 2013-01, Vol.1277 (1), p.91-104</ispartof><rights>2012 New York Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</citedby><cites>FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2012.06796.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2012.06796.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23163348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palzkill, Timothy</creatorcontrib><title>Metallo-β-lactamase structure and function</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.</description><subject>antibiotic resistance</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>beta-Lactamases - chemistry</subject><subject>beta-Lactamases - classification</subject><subject>beta-Lactamases - metabolism</subject><subject>Blocking</subject><subject>carbapenem</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Drugs</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Inhibitors</subject><subject>Metalloendopeptidases - chemistry</subject><subject>Metalloendopeptidases - classification</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mutagenesis</subject><subject>Protein Binding</subject><subject>Substrate Specificity</subject><subject>Zinc</subject><subject>zinc metallo-enzyme</subject><subject>β-lactamase</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkN9KwzAUh4Mobk5fQXYpSGvzp0lzI4yhU5hTUBGvDmmaamfXatLq9lo-iM9k6-bUO5OLBM7vfCf5EOrjwMfNOpr6WDDpcU6JTwJM_IALyf35BuquC5uoGwRCeJEktIN2nJsGTTJiYht1CMWcUhZ10eGFqVSel97Hu5crXamZcqbvKlvrqramr4qkn9aFrrKy2EVbqcqd2VudPXR7enIzPPPGl6Pz4WDs6ZBx7sVSqjDRgpkUy4hIQmKhdZKaOBJUipAlghGjE00ibhjDnAjN4jimLKE4wJj20PGS-1zHM5NoU1RW5fBss5myCyhVBn8rRfYID-UrNPSmP2wAByuALV9q4yqYZU6bPFeFKWsHmJJ2Mxk10WgZ1bZ0zpp0PQYH0LqGKbRKoVUKrWv4cg3zpnX_9zPXjd9yf_7xluVm8W8wTO4H1-21AXhLQOYqM18DlH0CLqgI4W4yAiGZvMKSwpB-AvdXnVw</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Palzkill, Timothy</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Metallo-β-lactamase structure and function</title><author>Palzkill, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antibiotic resistance</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>beta-Lactamases - chemistry</topic><topic>beta-Lactamases - classification</topic><topic>beta-Lactamases - metabolism</topic><topic>Blocking</topic><topic>carbapenem</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Drugs</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Inhibitors</topic><topic>Metalloendopeptidases - chemistry</topic><topic>Metalloendopeptidases - classification</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mutagenesis</topic><topic>Protein Binding</topic><topic>Substrate Specificity</topic><topic>Zinc</topic><topic>zinc metallo-enzyme</topic><topic>β-lactamase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palzkill, Timothy</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palzkill, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallo-β-lactamase structure and function</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2013-01</date><risdate>2013</risdate><volume>1277</volume><issue>1</issue><spage>91</spage><epage>104</epage><pages>91-104</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>23163348</pmid><doi>10.1111/j.1749-6632.2012.06796.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2013-01, Vol.1277 (1), p.91-104 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970115 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | antibiotic resistance Antiinfectives and antibacterials Bacteria beta-Lactamases - chemistry beta-Lactamases - classification beta-Lactamases - metabolism Blocking carbapenem Catalysis Catalytic Domain Drugs Enzymes Genes Inhibitors Metalloendopeptidases - chemistry Metalloendopeptidases - classification Metalloendopeptidases - metabolism Mutagenesis Protein Binding Substrate Specificity Zinc zinc metallo-enzyme β-lactamase |
title | Metallo-β-lactamase structure and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallo-%CE%B2-lactamase%20structure%20and%20function&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Palzkill,%20Timothy&rft.date=2013-01&rft.volume=1277&rft.issue=1&rft.spage=91&rft.epage=104&rft.pages=91-104&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2012.06796.x&rft_dat=%3Cproquest_pubme%3E1323232498%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323232498&rft_id=info:pmid/23163348&rfr_iscdi=true |