Metallo-β-lactamase structure and function

β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2013-01, Vol.1277 (1), p.91-104
1. Verfasser: Palzkill, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 91
container_title Annals of the New York Academy of Sciences
container_volume 1277
creator Palzkill, Timothy
description β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.
doi_str_mv 10.1111/j.1749-6632.2012.06796.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323232498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</originalsourceid><addsrcrecordid>eNqNkN9KwzAUh4Mobk5fQXYpSGvzp0lzI4yhU5hTUBGvDmmaamfXatLq9lo-iM9k6-bUO5OLBM7vfCf5EOrjwMfNOpr6WDDpcU6JTwJM_IALyf35BuquC5uoGwRCeJEktIN2nJsGTTJiYht1CMWcUhZ10eGFqVSel97Hu5crXamZcqbvKlvrqramr4qkn9aFrrKy2EVbqcqd2VudPXR7enIzPPPGl6Pz4WDs6ZBx7sVSqjDRgpkUy4hIQmKhdZKaOBJUipAlghGjE00ibhjDnAjN4jimLKE4wJj20PGS-1zHM5NoU1RW5fBss5myCyhVBn8rRfYID-UrNPSmP2wAByuALV9q4yqYZU6bPFeFKWsHmJJ2Mxk10WgZ1bZ0zpp0PQYH0LqGKbRKoVUKrWv4cg3zpnX_9zPXjd9yf_7xluVm8W8wTO4H1-21AXhLQOYqM18DlH0CLqgI4W4yAiGZvMKSwpB-AvdXnVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323232498</pqid></control><display><type>article</type><title>Metallo-β-lactamase structure and function</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Palzkill, Timothy</creator><creatorcontrib>Palzkill, Timothy</creatorcontrib><description>β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2012.06796.x</identifier><identifier>PMID: 23163348</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>antibiotic resistance ; Antiinfectives and antibacterials ; Bacteria ; beta-Lactamases - chemistry ; beta-Lactamases - classification ; beta-Lactamases - metabolism ; Blocking ; carbapenem ; Catalysis ; Catalytic Domain ; Drugs ; Enzymes ; Genes ; Inhibitors ; Metalloendopeptidases - chemistry ; Metalloendopeptidases - classification ; Metalloendopeptidases - metabolism ; Mutagenesis ; Protein Binding ; Substrate Specificity ; Zinc ; zinc metallo-enzyme ; β-lactamase</subject><ispartof>Annals of the New York Academy of Sciences, 2013-01, Vol.1277 (1), p.91-104</ispartof><rights>2012 New York Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</citedby><cites>FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2012.06796.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2012.06796.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23163348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palzkill, Timothy</creatorcontrib><title>Metallo-β-lactamase structure and function</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.</description><subject>antibiotic resistance</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>beta-Lactamases - chemistry</subject><subject>beta-Lactamases - classification</subject><subject>beta-Lactamases - metabolism</subject><subject>Blocking</subject><subject>carbapenem</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Drugs</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Inhibitors</subject><subject>Metalloendopeptidases - chemistry</subject><subject>Metalloendopeptidases - classification</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mutagenesis</subject><subject>Protein Binding</subject><subject>Substrate Specificity</subject><subject>Zinc</subject><subject>zinc metallo-enzyme</subject><subject>β-lactamase</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkN9KwzAUh4Mobk5fQXYpSGvzp0lzI4yhU5hTUBGvDmmaamfXatLq9lo-iM9k6-bUO5OLBM7vfCf5EOrjwMfNOpr6WDDpcU6JTwJM_IALyf35BuquC5uoGwRCeJEktIN2nJsGTTJiYht1CMWcUhZ10eGFqVSel97Hu5crXamZcqbvKlvrqramr4qkn9aFrrKy2EVbqcqd2VudPXR7enIzPPPGl6Pz4WDs6ZBx7sVSqjDRgpkUy4hIQmKhdZKaOBJUipAlghGjE00ibhjDnAjN4jimLKE4wJj20PGS-1zHM5NoU1RW5fBss5myCyhVBn8rRfYID-UrNPSmP2wAByuALV9q4yqYZU6bPFeFKWsHmJJ2Mxk10WgZ1bZ0zpp0PQYH0LqGKbRKoVUKrWv4cg3zpnX_9zPXjd9yf_7xluVm8W8wTO4H1-21AXhLQOYqM18DlH0CLqgI4W4yAiGZvMKSwpB-AvdXnVw</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Palzkill, Timothy</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201301</creationdate><title>Metallo-β-lactamase structure and function</title><author>Palzkill, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5466-b99a5dc74ef1982922b7ccdfeb8739754d742ecdc286e441627c4bbb34d310113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antibiotic resistance</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>beta-Lactamases - chemistry</topic><topic>beta-Lactamases - classification</topic><topic>beta-Lactamases - metabolism</topic><topic>Blocking</topic><topic>carbapenem</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Drugs</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Inhibitors</topic><topic>Metalloendopeptidases - chemistry</topic><topic>Metalloendopeptidases - classification</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mutagenesis</topic><topic>Protein Binding</topic><topic>Substrate Specificity</topic><topic>Zinc</topic><topic>zinc metallo-enzyme</topic><topic>β-lactamase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palzkill, Timothy</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palzkill, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallo-β-lactamase structure and function</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2013-01</date><risdate>2013</risdate><volume>1277</volume><issue>1</issue><spage>91</spage><epage>104</epage><pages>91-104</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>β‐Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo‐β‐lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β‐lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β‐lactamase. The dissemination of the genes encoding these enzymes among Gram‐negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo‐β‐lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>23163348</pmid><doi>10.1111/j.1749-6632.2012.06796.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2013-01, Vol.1277 (1), p.91-104
issn 0077-8923
1749-6632
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3970115
source MEDLINE; Wiley Online Library All Journals
subjects antibiotic resistance
Antiinfectives and antibacterials
Bacteria
beta-Lactamases - chemistry
beta-Lactamases - classification
beta-Lactamases - metabolism
Blocking
carbapenem
Catalysis
Catalytic Domain
Drugs
Enzymes
Genes
Inhibitors
Metalloendopeptidases - chemistry
Metalloendopeptidases - classification
Metalloendopeptidases - metabolism
Mutagenesis
Protein Binding
Substrate Specificity
Zinc
zinc metallo-enzyme
β-lactamase
title Metallo-β-lactamase structure and function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallo-%CE%B2-lactamase%20structure%20and%20function&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Palzkill,%20Timothy&rft.date=2013-01&rft.volume=1277&rft.issue=1&rft.spage=91&rft.epage=104&rft.pages=91-104&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2012.06796.x&rft_dat=%3Cproquest_pubme%3E1323232498%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323232498&rft_id=info:pmid/23163348&rfr_iscdi=true