Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data
When applied in large scale to electronic medical record data, the PheWAS approach replicates GWAS associations and reveals potentially new pleiotropic associations. Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2013-12, Vol.31 (12), p.1102-1111 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1111 |
---|---|
container_issue | 12 |
container_start_page | 1102 |
container_title | Nature biotechnology |
container_volume | 31 |
creator | Denny, Joshua C Bastarache, Lisa Ritchie, Marylyn D Carroll, Robert J Zink, Raquel Mosley, Jonathan D Field, Julie R Pulley, Jill M Ramirez, Andrea H Bowton, Erica Basford, Melissa A Carrell, David S Peissig, Peggy L Kho, Abel N Pacheco, Jennifer A Rasmussen, Luke V Crosslin, David R Crane, Paul K Pathak, Jyotishman Bielinski, Suzette J Pendergrass, Sarah A Xu, Hua Hindorff, Lucia A Li, Rongling Manolio, Teri A Chute, Christopher G Chisholm, Rex L Larson, Eric B Jarvik, Gail P Brilliant, Murray H McCarty, Catherine A Kullo, Iftikhar J Haines, Jonathan L Crawford, Dana C Masys, Daniel R Roden, Dan M |
description | When applied in large scale to electronic medical record data, the PheWAS approach replicates GWAS associations and reveals potentially new pleiotropic associations.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with
P
< 4.6 × 10
−6
(false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (
n
= 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease. |
doi_str_mv | 10.1038/nbt.2749 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3969265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353323604</galeid><sourcerecordid>A353323604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c711t-dbf97d3d40945e6bd0135e6c4eb4f84aaff65d0834d16757b78c475045cfe6803</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK2Cv0AGvFFw1mTyMZMboRQ_CoWCVW9DJjkzmzKTrElG3Tt_uhm61t0iIoEk5Dzvm5OTUxRPMVphRNrXrkuruqHiXnGMGeUV5oLfz3vUNhXCjB8Vj2K8RghxyvnD4qimdYNaKo6Ln1fbmGBSyepS-2mjgo3elb4vN2twfoLquzVQqhi9tpnKsZhms10IGEGn4F2WTmCsVmMZQPtgSqOSKpUz5fBPjwV7XDzo1RjhyW49KT6_e_vp7EN1cfn-_Oz0otINxqkyXS8aQwxFgjLgnUGY5FVT6GjfUqX6njODWkIN5g1ruqbVtGGIMt0DbxE5Kd7c-G7mLmerwaWgRrkJdlJhK72y8jDi7FoO_pskgouas2zwYmcQ_NcZYpKTjRrGUTnwc5SYijqnKgTO6PM76LWfg8vPk5ixtkWU4z1qUCNI63qf79WLqTwljJCacEQztfoLlYeByWrvoLf5_EDw8kCQmQQ_0qDmGOX51cf_Zy-_HLKv9thujtZBzFO0wzrFG8kBviuXDj7GAP1tqTGSS9PK3LRyadqMPtv_mlvwd5f-STPmkBsg7NXzrtkvvc704g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558804611</pqid></control><display><type>article</type><title>Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Denny, Joshua C ; Bastarache, Lisa ; Ritchie, Marylyn D ; Carroll, Robert J ; Zink, Raquel ; Mosley, Jonathan D ; Field, Julie R ; Pulley, Jill M ; Ramirez, Andrea H ; Bowton, Erica ; Basford, Melissa A ; Carrell, David S ; Peissig, Peggy L ; Kho, Abel N ; Pacheco, Jennifer A ; Rasmussen, Luke V ; Crosslin, David R ; Crane, Paul K ; Pathak, Jyotishman ; Bielinski, Suzette J ; Pendergrass, Sarah A ; Xu, Hua ; Hindorff, Lucia A ; Li, Rongling ; Manolio, Teri A ; Chute, Christopher G ; Chisholm, Rex L ; Larson, Eric B ; Jarvik, Gail P ; Brilliant, Murray H ; McCarty, Catherine A ; Kullo, Iftikhar J ; Haines, Jonathan L ; Crawford, Dana C ; Masys, Daniel R ; Roden, Dan M</creator><creatorcontrib>Denny, Joshua C ; Bastarache, Lisa ; Ritchie, Marylyn D ; Carroll, Robert J ; Zink, Raquel ; Mosley, Jonathan D ; Field, Julie R ; Pulley, Jill M ; Ramirez, Andrea H ; Bowton, Erica ; Basford, Melissa A ; Carrell, David S ; Peissig, Peggy L ; Kho, Abel N ; Pacheco, Jennifer A ; Rasmussen, Luke V ; Crosslin, David R ; Crane, Paul K ; Pathak, Jyotishman ; Bielinski, Suzette J ; Pendergrass, Sarah A ; Xu, Hua ; Hindorff, Lucia A ; Li, Rongling ; Manolio, Teri A ; Chute, Christopher G ; Chisholm, Rex L ; Larson, Eric B ; Jarvik, Gail P ; Brilliant, Murray H ; McCarty, Catherine A ; Kullo, Iftikhar J ; Haines, Jonathan L ; Crawford, Dana C ; Masys, Daniel R ; Roden, Dan M</creatorcontrib><description>When applied in large scale to electronic medical record data, the PheWAS approach replicates GWAS associations and reveals potentially new pleiotropic associations.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with
P
< 4.6 × 10
−6
(false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (
n
= 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.2749</identifier><identifier>PMID: 24270849</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/205 ; 692/308/575 ; 692/699 ; Agriculture ; Analysis ; Bioinformatics ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chromosome Mapping - methods ; Data analysis ; Data Mining - methods ; Disease susceptibility ; Electronic health records ; Electronic Health Records - statistics & numerical data ; Genetic aspects ; Genetic Predisposition to Disease - epidemiology ; Genetic Predisposition to Disease - genetics ; Genetic variance ; Genome-Wide Association Study - methods ; Genome-Wide Association Study - statistics & numerical data ; Genomics ; Genotype & phenotype ; Genotypes ; Humans ; Life Sciences ; Medical Record Linkage - methods ; Medical records ; Phenotype ; Polymorphism, Single Nucleotide - genetics</subject><ispartof>Nature biotechnology, 2013-12, Vol.31 (12), p.1102-1111</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2013</rights><rights>2013 Nature America, Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c711t-dbf97d3d40945e6bd0135e6c4eb4f84aaff65d0834d16757b78c475045cfe6803</citedby><cites>FETCH-LOGICAL-c711t-dbf97d3d40945e6bd0135e6c4eb4f84aaff65d0834d16757b78c475045cfe6803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.2749$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.2749$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24270849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Denny, Joshua C</creatorcontrib><creatorcontrib>Bastarache, Lisa</creatorcontrib><creatorcontrib>Ritchie, Marylyn D</creatorcontrib><creatorcontrib>Carroll, Robert J</creatorcontrib><creatorcontrib>Zink, Raquel</creatorcontrib><creatorcontrib>Mosley, Jonathan D</creatorcontrib><creatorcontrib>Field, Julie R</creatorcontrib><creatorcontrib>Pulley, Jill M</creatorcontrib><creatorcontrib>Ramirez, Andrea H</creatorcontrib><creatorcontrib>Bowton, Erica</creatorcontrib><creatorcontrib>Basford, Melissa A</creatorcontrib><creatorcontrib>Carrell, David S</creatorcontrib><creatorcontrib>Peissig, Peggy L</creatorcontrib><creatorcontrib>Kho, Abel N</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Rasmussen, Luke V</creatorcontrib><creatorcontrib>Crosslin, David R</creatorcontrib><creatorcontrib>Crane, Paul K</creatorcontrib><creatorcontrib>Pathak, Jyotishman</creatorcontrib><creatorcontrib>Bielinski, Suzette J</creatorcontrib><creatorcontrib>Pendergrass, Sarah A</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Hindorff, Lucia A</creatorcontrib><creatorcontrib>Li, Rongling</creatorcontrib><creatorcontrib>Manolio, Teri A</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Chisholm, Rex L</creatorcontrib><creatorcontrib>Larson, Eric B</creatorcontrib><creatorcontrib>Jarvik, Gail P</creatorcontrib><creatorcontrib>Brilliant, Murray H</creatorcontrib><creatorcontrib>McCarty, Catherine A</creatorcontrib><creatorcontrib>Kullo, Iftikhar J</creatorcontrib><creatorcontrib>Haines, Jonathan L</creatorcontrib><creatorcontrib>Crawford, Dana C</creatorcontrib><creatorcontrib>Masys, Daniel R</creatorcontrib><creatorcontrib>Roden, Dan M</creatorcontrib><title>Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>When applied in large scale to electronic medical record data, the PheWAS approach replicates GWAS associations and reveals potentially new pleiotropic associations.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with
P
< 4.6 × 10
−6
(false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (
n
= 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.</description><subject>631/208/205</subject><subject>692/308/575</subject><subject>692/699</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromosome Mapping - methods</subject><subject>Data analysis</subject><subject>Data Mining - methods</subject><subject>Disease susceptibility</subject><subject>Electronic health records</subject><subject>Electronic Health Records - statistics & numerical data</subject><subject>Genetic aspects</subject><subject>Genetic Predisposition to Disease - epidemiology</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic variance</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genome-Wide Association Study - statistics & numerical data</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medical Record Linkage - methods</subject><subject>Medical records</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFDEUhgdRbK2Cv0AGvFFw1mTyMZMboRQ_CoWCVW9DJjkzmzKTrElG3Tt_uhm61t0iIoEk5Dzvm5OTUxRPMVphRNrXrkuruqHiXnGMGeUV5oLfz3vUNhXCjB8Vj2K8RghxyvnD4qimdYNaKo6Ln1fbmGBSyepS-2mjgo3elb4vN2twfoLquzVQqhi9tpnKsZhms10IGEGn4F2WTmCsVmMZQPtgSqOSKpUz5fBPjwV7XDzo1RjhyW49KT6_e_vp7EN1cfn-_Oz0otINxqkyXS8aQwxFgjLgnUGY5FVT6GjfUqX6njODWkIN5g1ruqbVtGGIMt0DbxE5Kd7c-G7mLmerwaWgRrkJdlJhK72y8jDi7FoO_pskgouas2zwYmcQ_NcZYpKTjRrGUTnwc5SYijqnKgTO6PM76LWfg8vPk5ixtkWU4z1qUCNI63qf79WLqTwljJCacEQztfoLlYeByWrvoLf5_EDw8kCQmQQ_0qDmGOX51cf_Zy-_HLKv9thujtZBzFO0wzrFG8kBviuXDj7GAP1tqTGSS9PK3LRyadqMPtv_mlvwd5f-STPmkBsg7NXzrtkvvc704g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Denny, Joshua C</creator><creator>Bastarache, Lisa</creator><creator>Ritchie, Marylyn D</creator><creator>Carroll, Robert J</creator><creator>Zink, Raquel</creator><creator>Mosley, Jonathan D</creator><creator>Field, Julie R</creator><creator>Pulley, Jill M</creator><creator>Ramirez, Andrea H</creator><creator>Bowton, Erica</creator><creator>Basford, Melissa A</creator><creator>Carrell, David S</creator><creator>Peissig, Peggy L</creator><creator>Kho, Abel N</creator><creator>Pacheco, Jennifer A</creator><creator>Rasmussen, Luke V</creator><creator>Crosslin, David R</creator><creator>Crane, Paul K</creator><creator>Pathak, Jyotishman</creator><creator>Bielinski, Suzette J</creator><creator>Pendergrass, Sarah A</creator><creator>Xu, Hua</creator><creator>Hindorff, Lucia A</creator><creator>Li, Rongling</creator><creator>Manolio, Teri A</creator><creator>Chute, Christopher G</creator><creator>Chisholm, Rex L</creator><creator>Larson, Eric B</creator><creator>Jarvik, Gail P</creator><creator>Brilliant, Murray H</creator><creator>McCarty, Catherine A</creator><creator>Kullo, Iftikhar J</creator><creator>Haines, Jonathan L</creator><creator>Crawford, Dana C</creator><creator>Masys, Daniel R</creator><creator>Roden, Dan M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data</title><author>Denny, Joshua C ; Bastarache, Lisa ; Ritchie, Marylyn D ; Carroll, Robert J ; Zink, Raquel ; Mosley, Jonathan D ; Field, Julie R ; Pulley, Jill M ; Ramirez, Andrea H ; Bowton, Erica ; Basford, Melissa A ; Carrell, David S ; Peissig, Peggy L ; Kho, Abel N ; Pacheco, Jennifer A ; Rasmussen, Luke V ; Crosslin, David R ; Crane, Paul K ; Pathak, Jyotishman ; Bielinski, Suzette J ; Pendergrass, Sarah A ; Xu, Hua ; Hindorff, Lucia A ; Li, Rongling ; Manolio, Teri A ; Chute, Christopher G ; Chisholm, Rex L ; Larson, Eric B ; Jarvik, Gail P ; Brilliant, Murray H ; McCarty, Catherine A ; Kullo, Iftikhar J ; Haines, Jonathan L ; Crawford, Dana C ; Masys, Daniel R ; Roden, Dan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c711t-dbf97d3d40945e6bd0135e6c4eb4f84aaff65d0834d16757b78c475045cfe6803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/208/205</topic><topic>692/308/575</topic><topic>692/699</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromosome Mapping - methods</topic><topic>Data analysis</topic><topic>Data Mining - methods</topic><topic>Disease susceptibility</topic><topic>Electronic health records</topic><topic>Electronic Health Records - statistics & numerical data</topic><topic>Genetic aspects</topic><topic>Genetic Predisposition to Disease - epidemiology</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic variance</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genome-Wide Association Study - statistics & numerical data</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medical Record Linkage - methods</topic><topic>Medical records</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denny, Joshua C</creatorcontrib><creatorcontrib>Bastarache, Lisa</creatorcontrib><creatorcontrib>Ritchie, Marylyn D</creatorcontrib><creatorcontrib>Carroll, Robert J</creatorcontrib><creatorcontrib>Zink, Raquel</creatorcontrib><creatorcontrib>Mosley, Jonathan D</creatorcontrib><creatorcontrib>Field, Julie R</creatorcontrib><creatorcontrib>Pulley, Jill M</creatorcontrib><creatorcontrib>Ramirez, Andrea H</creatorcontrib><creatorcontrib>Bowton, Erica</creatorcontrib><creatorcontrib>Basford, Melissa A</creatorcontrib><creatorcontrib>Carrell, David S</creatorcontrib><creatorcontrib>Peissig, Peggy L</creatorcontrib><creatorcontrib>Kho, Abel N</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Rasmussen, Luke V</creatorcontrib><creatorcontrib>Crosslin, David R</creatorcontrib><creatorcontrib>Crane, Paul K</creatorcontrib><creatorcontrib>Pathak, Jyotishman</creatorcontrib><creatorcontrib>Bielinski, Suzette J</creatorcontrib><creatorcontrib>Pendergrass, Sarah A</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Hindorff, Lucia A</creatorcontrib><creatorcontrib>Li, Rongling</creatorcontrib><creatorcontrib>Manolio, Teri A</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Chisholm, Rex L</creatorcontrib><creatorcontrib>Larson, Eric B</creatorcontrib><creatorcontrib>Jarvik, Gail P</creatorcontrib><creatorcontrib>Brilliant, Murray H</creatorcontrib><creatorcontrib>McCarty, Catherine A</creatorcontrib><creatorcontrib>Kullo, Iftikhar J</creatorcontrib><creatorcontrib>Haines, Jonathan L</creatorcontrib><creatorcontrib>Crawford, Dana C</creatorcontrib><creatorcontrib>Masys, Daniel R</creatorcontrib><creatorcontrib>Roden, Dan M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denny, Joshua C</au><au>Bastarache, Lisa</au><au>Ritchie, Marylyn D</au><au>Carroll, Robert J</au><au>Zink, Raquel</au><au>Mosley, Jonathan D</au><au>Field, Julie R</au><au>Pulley, Jill M</au><au>Ramirez, Andrea H</au><au>Bowton, Erica</au><au>Basford, Melissa A</au><au>Carrell, David S</au><au>Peissig, Peggy L</au><au>Kho, Abel N</au><au>Pacheco, Jennifer A</au><au>Rasmussen, Luke V</au><au>Crosslin, David R</au><au>Crane, Paul K</au><au>Pathak, Jyotishman</au><au>Bielinski, Suzette J</au><au>Pendergrass, Sarah A</au><au>Xu, Hua</au><au>Hindorff, Lucia A</au><au>Li, Rongling</au><au>Manolio, Teri A</au><au>Chute, Christopher G</au><au>Chisholm, Rex L</au><au>Larson, Eric B</au><au>Jarvik, Gail P</au><au>Brilliant, Murray H</au><au>McCarty, Catherine A</au><au>Kullo, Iftikhar J</au><au>Haines, Jonathan L</au><au>Crawford, Dana C</au><au>Masys, Daniel R</au><au>Roden, Dan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>31</volume><issue>12</issue><spage>1102</spage><epage>1111</epage><pages>1102-1111</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>When applied in large scale to electronic medical record data, the PheWAS approach replicates GWAS associations and reveals potentially new pleiotropic associations.
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with
P
< 4.6 × 10
−6
(false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (
n
= 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24270849</pmid><doi>10.1038/nbt.2749</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2013-12, Vol.31 (12), p.1102-1111 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3969265 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/208/205 692/308/575 692/699 Agriculture Analysis Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Chromosome Mapping - methods Data analysis Data Mining - methods Disease susceptibility Electronic health records Electronic Health Records - statistics & numerical data Genetic aspects Genetic Predisposition to Disease - epidemiology Genetic Predisposition to Disease - genetics Genetic variance Genome-Wide Association Study - methods Genome-Wide Association Study - statistics & numerical data Genomics Genotype & phenotype Genotypes Humans Life Sciences Medical Record Linkage - methods Medical records Phenotype Polymorphism, Single Nucleotide - genetics |
title | Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20comparison%20of%20phenome-wide%20association%20study%20of%20electronic%20medical%20record%20data%20and%20genome-wide%20association%20study%20data&rft.jtitle=Nature%20biotechnology&rft.au=Denny,%20Joshua%20C&rft.date=2013-12-01&rft.volume=31&rft.issue=12&rft.spage=1102&rft.epage=1111&rft.pages=1102-1111&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.2749&rft_dat=%3Cgale_pubme%3EA353323604%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558804611&rft_id=info:pmid/24270849&rft_galeid=A353323604&rfr_iscdi=true |