Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria

To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative Biology, 5(11):1393-1406 5(11):1393-1406, 2013-01, Vol.5 (11), p.1393-1406
Hauptverfasser: Taylor, Ronald C, Webb Robertson, Bobbie-Jo M, Markillie, Lye Meng, Serres, Margrethe H, Linggi, Bryan E, Aldrich, Joshua T, Hill, Eric A, Romine, Margaret F, Lipton, Mary S, Wiley, H Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 11
container_start_page 1393
container_title Integrative Biology, 5(11):1393-1406
container_volume 5
creator Taylor, Ronald C
Webb Robertson, Bobbie-Jo M
Markillie, Lye Meng
Serres, Margrethe H
Linggi, Bryan E
Aldrich, Joshua T
Hill, Eric A
Romine, Margaret F
Lipton, Mary S
Wiley, H Steven
description To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily due to differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Transcription levels were sp. significantly altered for 26% of the protein changes; translational efficiency was significantly altered for 46% and a combination of both was responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part due to altered tRNA pools, is a major determinant of regulated alterations in protein expression levels in bacteria.
doi_str_mv 10.1039/c3ib40120k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3968953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1444392499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c2510fb1bff5c776939099194222b91876ff4d5df7d07686be5ae41c3884eb423</originalsourceid><addsrcrecordid>eNqFkUtrVDEUxy9isbW68QNIcCXC1LwfG6EMvqDQja5Dbu7JTPTeZEwyhfn2pk5bddXVOXB-538e_2F4RfAFwcy89yyOHBOKfz4ZzogSamUU1k_vc2n46fC81h8YS44xfzacUo414dScDbv11qUNVBQTasWlOrsWc3IzghCij5D8AcWKHJryEpNLDRXY7DuVywEt4Ht7rMuf9i0gSDex5LRAal2iQN3lVAHlgEbnG5ToXgwnwc0VXt7F8-H7p4_f1l9WV9efv64vr1aeM91WngqCw0jGEIRXShpmsDHEcErpaIhWMgQ-iSmoCSup5QjCASeeac1h5JSdDx-Ourv9uMDk-0bFzXZX4uLKwWYX7f-VFLd2k28sM1IbwbrAm6NAri3a6mPrx_qcEvhmCbl9IO7Q27spJf_aQ212idXDPLsEeV8tEVJqobQgj6Occ2YoN6aj746oL7nWAuFhbYLtreX2r-Udfv3voQ_ovcfsN6XOqRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444392499</pqid></control><display><type>article</type><title>Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Taylor, Ronald C ; Webb Robertson, Bobbie-Jo M ; Markillie, Lye Meng ; Serres, Margrethe H ; Linggi, Bryan E ; Aldrich, Joshua T ; Hill, Eric A ; Romine, Margaret F ; Lipton, Mary S ; Wiley, H Steven</creator><creatorcontrib>Taylor, Ronald C ; Webb Robertson, Bobbie-Jo M ; Markillie, Lye Meng ; Serres, Margrethe H ; Linggi, Bryan E ; Aldrich, Joshua T ; Hill, Eric A ; Romine, Margaret F ; Lipton, Mary S ; Wiley, H Steven ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on &gt;1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily due to differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Transcription levels were sp. significantly altered for 26% of the protein changes; translational efficiency was significantly altered for 46% and a combination of both was responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part due to altered tRNA pools, is a major determinant of regulated alterations in protein expression levels in bacteria.</description><identifier>ISSN: 1757-9694</identifier><identifier>EISSN: 1757-9708</identifier><identifier>DOI: 10.1039/c3ib40120k</identifier><identifier>PMID: 24081429</identifier><language>eng</language><publisher>England</publisher><subject>Bacterial Physiological Phenomena ; Bacterial Proteins - metabolism ; Codon ; Environment ; Environmental Molecular Sciences Laboratory ; Escherichia coli - metabolism ; Mass Spectrometry ; microbiology ; Oxygen - metabolism ; Protein Biosynthesis ; Proteome ; Proteomics ; Regression Analysis ; Reproducibility of Results ; RNA, Messenger - metabolism ; RNA, Transfer - metabolism ; Sequence Analysis, RNA ; Shewanella - genetics ; Shewanella - metabolism ; Shewanella oneidensis ; systems biology ; Time Factors ; Transcription, Genetic ; Transcriptome ; transcriptomics</subject><ispartof>Integrative Biology, 5(11):1393-1406, 2013-01, Vol.5 (11), p.1393-1406</ispartof><rights>The Royal Society of Chemistry [year]</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c2510fb1bff5c776939099194222b91876ff4d5df7d07686be5ae41c3884eb423</citedby><cites>FETCH-LOGICAL-c438t-c2510fb1bff5c776939099194222b91876ff4d5df7d07686be5ae41c3884eb423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24081429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1108140$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Ronald C</creatorcontrib><creatorcontrib>Webb Robertson, Bobbie-Jo M</creatorcontrib><creatorcontrib>Markillie, Lye Meng</creatorcontrib><creatorcontrib>Serres, Margrethe H</creatorcontrib><creatorcontrib>Linggi, Bryan E</creatorcontrib><creatorcontrib>Aldrich, Joshua T</creatorcontrib><creatorcontrib>Hill, Eric A</creatorcontrib><creatorcontrib>Romine, Margaret F</creatorcontrib><creatorcontrib>Lipton, Mary S</creatorcontrib><creatorcontrib>Wiley, H Steven</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria</title><title>Integrative Biology, 5(11):1393-1406</title><addtitle>Integr Biol (Camb)</addtitle><description>To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on &gt;1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily due to differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Transcription levels were sp. significantly altered for 26% of the protein changes; translational efficiency was significantly altered for 46% and a combination of both was responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part due to altered tRNA pools, is a major determinant of regulated alterations in protein expression levels in bacteria.</description><subject>Bacterial Physiological Phenomena</subject><subject>Bacterial Proteins - metabolism</subject><subject>Codon</subject><subject>Environment</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Escherichia coli - metabolism</subject><subject>Mass Spectrometry</subject><subject>microbiology</subject><subject>Oxygen - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer - metabolism</subject><subject>Sequence Analysis, RNA</subject><subject>Shewanella - genetics</subject><subject>Shewanella - metabolism</subject><subject>Shewanella oneidensis</subject><subject>systems biology</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><issn>1757-9694</issn><issn>1757-9708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtrVDEUxy9isbW68QNIcCXC1LwfG6EMvqDQja5Dbu7JTPTeZEwyhfn2pk5bddXVOXB-538e_2F4RfAFwcy89yyOHBOKfz4ZzogSamUU1k_vc2n46fC81h8YS44xfzacUo414dScDbv11qUNVBQTasWlOrsWc3IzghCij5D8AcWKHJryEpNLDRXY7DuVywEt4Ht7rMuf9i0gSDex5LRAal2iQN3lVAHlgEbnG5ToXgwnwc0VXt7F8-H7p4_f1l9WV9efv64vr1aeM91WngqCw0jGEIRXShpmsDHEcErpaIhWMgQ-iSmoCSup5QjCASeeac1h5JSdDx-Ourv9uMDk-0bFzXZX4uLKwWYX7f-VFLd2k28sM1IbwbrAm6NAri3a6mPrx_qcEvhmCbl9IO7Q27spJf_aQ212idXDPLsEeV8tEVJqobQgj6Occ2YoN6aj746oL7nWAuFhbYLtreX2r-Udfv3voQ_ovcfsN6XOqRQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Taylor, Ronald C</creator><creator>Webb Robertson, Bobbie-Jo M</creator><creator>Markillie, Lye Meng</creator><creator>Serres, Margrethe H</creator><creator>Linggi, Bryan E</creator><creator>Aldrich, Joshua T</creator><creator>Hill, Eric A</creator><creator>Romine, Margaret F</creator><creator>Lipton, Mary S</creator><creator>Wiley, H Steven</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria</title><author>Taylor, Ronald C ; Webb Robertson, Bobbie-Jo M ; Markillie, Lye Meng ; Serres, Margrethe H ; Linggi, Bryan E ; Aldrich, Joshua T ; Hill, Eric A ; Romine, Margaret F ; Lipton, Mary S ; Wiley, H Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c2510fb1bff5c776939099194222b91876ff4d5df7d07686be5ae41c3884eb423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacterial Physiological Phenomena</topic><topic>Bacterial Proteins - metabolism</topic><topic>Codon</topic><topic>Environment</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Escherichia coli - metabolism</topic><topic>Mass Spectrometry</topic><topic>microbiology</topic><topic>Oxygen - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer - metabolism</topic><topic>Sequence Analysis, RNA</topic><topic>Shewanella - genetics</topic><topic>Shewanella - metabolism</topic><topic>Shewanella oneidensis</topic><topic>systems biology</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Ronald C</creatorcontrib><creatorcontrib>Webb Robertson, Bobbie-Jo M</creatorcontrib><creatorcontrib>Markillie, Lye Meng</creatorcontrib><creatorcontrib>Serres, Margrethe H</creatorcontrib><creatorcontrib>Linggi, Bryan E</creatorcontrib><creatorcontrib>Aldrich, Joshua T</creatorcontrib><creatorcontrib>Hill, Eric A</creatorcontrib><creatorcontrib>Romine, Margaret F</creatorcontrib><creatorcontrib>Lipton, Mary S</creatorcontrib><creatorcontrib>Wiley, H Steven</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Integrative Biology, 5(11):1393-1406</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Ronald C</au><au>Webb Robertson, Bobbie-Jo M</au><au>Markillie, Lye Meng</au><au>Serres, Margrethe H</au><au>Linggi, Bryan E</au><au>Aldrich, Joshua T</au><au>Hill, Eric A</au><au>Romine, Margaret F</au><au>Lipton, Mary S</au><au>Wiley, H Steven</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria</atitle><jtitle>Integrative Biology, 5(11):1393-1406</jtitle><addtitle>Integr Biol (Camb)</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>5</volume><issue>11</issue><spage>1393</spage><epage>1406</epage><pages>1393-1406</pages><issn>1757-9694</issn><eissn>1757-9708</eissn><abstract>To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on &gt;1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily due to differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Transcription levels were sp. significantly altered for 26% of the protein changes; translational efficiency was significantly altered for 46% and a combination of both was responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part due to altered tRNA pools, is a major determinant of regulated alterations in protein expression levels in bacteria.</abstract><cop>England</cop><pmid>24081429</pmid><doi>10.1039/c3ib40120k</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-9694
ispartof Integrative Biology, 5(11):1393-1406, 2013-01, Vol.5 (11), p.1393-1406
issn 1757-9694
1757-9708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3968953
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Royal Society Of Chemistry Journals 2008-
subjects Bacterial Physiological Phenomena
Bacterial Proteins - metabolism
Codon
Environment
Environmental Molecular Sciences Laboratory
Escherichia coli - metabolism
Mass Spectrometry
microbiology
Oxygen - metabolism
Protein Biosynthesis
Proteome
Proteomics
Regression Analysis
Reproducibility of Results
RNA, Messenger - metabolism
RNA, Transfer - metabolism
Sequence Analysis, RNA
Shewanella - genetics
Shewanella - metabolism
Shewanella oneidensis
systems biology
Time Factors
Transcription, Genetic
Transcriptome
transcriptomics
title Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20translational%20efficiency%20is%20a%20dominant%20regulatory%20mechanism%20in%20the%20environmental%20response%20of%20bacteria&rft.jtitle=Integrative%20Biology,%205(11):1393-1406&rft.au=Taylor,%20Ronald%20C&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2013-01-01&rft.volume=5&rft.issue=11&rft.spage=1393&rft.epage=1406&rft.pages=1393-1406&rft.issn=1757-9694&rft.eissn=1757-9708&rft_id=info:doi/10.1039/c3ib40120k&rft_dat=%3Cproquest_pubme%3E1444392499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444392499&rft_id=info:pmid/24081429&rfr_iscdi=true