The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias

Although randomized controlled trials are considered the ‘gold standard’ for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2013-09, Vol.32 (20), p.3552-3568
Hauptverfasser: Pressler, Taylor R., Kaizar, Eloise E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3568
container_issue 20
container_start_page 3552
container_title Statistics in medicine
container_volume 32
creator Pressler, Taylor R.
Kaizar, Eloise E.
description Although randomized controlled trials are considered the ‘gold standard’ for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We propose to use observational data to estimate the bias due to enrollment restrictions, which we term generalizability bias. In this paper, we introduce a class of estimators for the generalizability bias and use simulation to study its properties in the presence of non‐constant treatment effects. We find the surprising result that our estimators can be unbiased for the true generalizability bias even when all potentially confounding variables are not measured. In addition, our proposed doubly robust estimator performs well even for mis‐specified models. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.5802
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3967586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1424323630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-d76900656e630809de41d47e20326971deb92d1c47d36816d714ee10a81b05fb3</originalsourceid><addsrcrecordid>eNp1kV1PFDEUhhsjkRVN_AWmiTfeDPZj2s7cmBgiiAJ-YbxsOtOzUOxMl7YDLL_eLqzrR-JVT9InT95zXoSeUbJLCWGvkht2RUPYAzSjpFUVYaJ5iGaEKVVJRcU2epzSBSGUCqYeoW3GheBc8Rm6PD0HPCXAYY4XMSxgTC4vcepDhITNaHHoEsQrk10YjcfWZINzwJCyG0wGHAsTBncLFvdhzDF4X8YcXYHPYIRovLs1nfMrbedMeoK25sYneLp-d9C3_bene--qo48Hh3tvjqq-VpJVVsmWECkkSE4a0lqoqa0VMMKZbBW10LXM0gJbLhsqraI1ACWmoR0R847voNf33sXUDWB7KOGM14tYcselDsbpv39Gd67PwpXmrVSikUXwci2I4XIqC-vBpR68NyOEKWlas5ozXuIV9MU_6EWYYrnXHSWpVJK0v4V9DClFmG_CUKJXPerSo171WNDnf4bfgL-KK0B1D1w7D8v_ivTXw-O1cM27lOFmw5v4Q0vFldDfTw70-w_q0z798lm3_Cf0f7e1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426167609</pqid></control><display><type>article</type><title>The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pressler, Taylor R. ; Kaizar, Eloise E.</creator><creatorcontrib>Pressler, Taylor R. ; Kaizar, Eloise E.</creatorcontrib><description>Although randomized controlled trials are considered the ‘gold standard’ for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We propose to use observational data to estimate the bias due to enrollment restrictions, which we term generalizability bias. In this paper, we introduce a class of estimators for the generalizability bias and use simulation to study its properties in the presence of non‐constant treatment effects. We find the surprising result that our estimators can be unbiased for the true generalizability bias even when all potentially confounding variables are not measured. In addition, our proposed doubly robust estimator performs well even for mis‐specified models. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5802</identifier><identifier>PMID: 23553373</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bias ; causal effect ; Cause &amp; effect diagrams ; Clinical trials ; Computer Simulation ; Confounding Factors (Epidemiology) ; Data Interpretation, Statistical ; Extraction, Obstetrical - instrumentation ; Female ; Humans ; Medical errors ; Medicine ; Models, Statistical ; observational studies ; Propensity Score ; randomized controlled trials ; Randomized Controlled Trials as Topic - methods ; sample selection error ; Samples ; Statistical methods ; Treatment Outcome</subject><ispartof>Statistics in medicine, 2013-09, Vol.32 (20), p.3552-3568</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Sep 10, 2013</rights><rights>Copyright © 0000 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-d76900656e630809de41d47e20326971deb92d1c47d36816d714ee10a81b05fb3</citedby><cites>FETCH-LOGICAL-c4762-d76900656e630809de41d47e20326971deb92d1c47d36816d714ee10a81b05fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.5802$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.5802$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23553373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pressler, Taylor R.</creatorcontrib><creatorcontrib>Kaizar, Eloise E.</creatorcontrib><title>The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Although randomized controlled trials are considered the ‘gold standard’ for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We propose to use observational data to estimate the bias due to enrollment restrictions, which we term generalizability bias. In this paper, we introduce a class of estimators for the generalizability bias and use simulation to study its properties in the presence of non‐constant treatment effects. We find the surprising result that our estimators can be unbiased for the true generalizability bias even when all potentially confounding variables are not measured. In addition, our proposed doubly robust estimator performs well even for mis‐specified models. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Bias</subject><subject>causal effect</subject><subject>Cause &amp; effect diagrams</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>Confounding Factors (Epidemiology)</subject><subject>Data Interpretation, Statistical</subject><subject>Extraction, Obstetrical - instrumentation</subject><subject>Female</subject><subject>Humans</subject><subject>Medical errors</subject><subject>Medicine</subject><subject>Models, Statistical</subject><subject>observational studies</subject><subject>Propensity Score</subject><subject>randomized controlled trials</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>sample selection error</subject><subject>Samples</subject><subject>Statistical methods</subject><subject>Treatment Outcome</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1PFDEUhhsjkRVN_AWmiTfeDPZj2s7cmBgiiAJ-YbxsOtOzUOxMl7YDLL_eLqzrR-JVT9InT95zXoSeUbJLCWGvkht2RUPYAzSjpFUVYaJ5iGaEKVVJRcU2epzSBSGUCqYeoW3GheBc8Rm6PD0HPCXAYY4XMSxgTC4vcepDhITNaHHoEsQrk10YjcfWZINzwJCyG0wGHAsTBncLFvdhzDF4X8YcXYHPYIRovLs1nfMrbedMeoK25sYneLp-d9C3_bene--qo48Hh3tvjqq-VpJVVsmWECkkSE4a0lqoqa0VMMKZbBW10LXM0gJbLhsqraI1ACWmoR0R847voNf33sXUDWB7KOGM14tYcselDsbpv39Gd67PwpXmrVSikUXwci2I4XIqC-vBpR68NyOEKWlas5ozXuIV9MU_6EWYYrnXHSWpVJK0v4V9DClFmG_CUKJXPerSo171WNDnf4bfgL-KK0B1D1w7D8v_ivTXw-O1cM27lOFmw5v4Q0vFldDfTw70-w_q0z798lm3_Cf0f7e1</recordid><startdate>20130910</startdate><enddate>20130910</enddate><creator>Pressler, Taylor R.</creator><creator>Kaizar, Eloise E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130910</creationdate><title>The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias</title><author>Pressler, Taylor R. ; Kaizar, Eloise E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-d76900656e630809de41d47e20326971deb92d1c47d36816d714ee10a81b05fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bias</topic><topic>causal effect</topic><topic>Cause &amp; effect diagrams</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>Confounding Factors (Epidemiology)</topic><topic>Data Interpretation, Statistical</topic><topic>Extraction, Obstetrical - instrumentation</topic><topic>Female</topic><topic>Humans</topic><topic>Medical errors</topic><topic>Medicine</topic><topic>Models, Statistical</topic><topic>observational studies</topic><topic>Propensity Score</topic><topic>randomized controlled trials</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>sample selection error</topic><topic>Samples</topic><topic>Statistical methods</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pressler, Taylor R.</creatorcontrib><creatorcontrib>Kaizar, Eloise E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pressler, Taylor R.</au><au>Kaizar, Eloise E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2013-09-10</date><risdate>2013</risdate><volume>32</volume><issue>20</issue><spage>3552</spage><epage>3568</epage><pages>3552-3568</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Although randomized controlled trials are considered the ‘gold standard’ for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We propose to use observational data to estimate the bias due to enrollment restrictions, which we term generalizability bias. In this paper, we introduce a class of estimators for the generalizability bias and use simulation to study its properties in the presence of non‐constant treatment effects. We find the surprising result that our estimators can be unbiased for the true generalizability bias even when all potentially confounding variables are not measured. In addition, our proposed doubly robust estimator performs well even for mis‐specified models. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23553373</pmid><doi>10.1002/sim.5802</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2013-09, Vol.32 (20), p.3552-3568
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3967586
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bias
causal effect
Cause & effect diagrams
Clinical trials
Computer Simulation
Confounding Factors (Epidemiology)
Data Interpretation, Statistical
Extraction, Obstetrical - instrumentation
Female
Humans
Medical errors
Medicine
Models, Statistical
observational studies
Propensity Score
randomized controlled trials
Randomized Controlled Trials as Topic - methods
sample selection error
Samples
Statistical methods
Treatment Outcome
title The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20propensity%20scores%20and%20observational%20data%20to%20estimate%20randomized%20controlled%20trial%20generalizability%20bias&rft.jtitle=Statistics%20in%20medicine&rft.au=Pressler,%20Taylor%20R.&rft.date=2013-09-10&rft.volume=32&rft.issue=20&rft.spage=3552&rft.epage=3568&rft.pages=3552-3568&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5802&rft_dat=%3Cproquest_pubme%3E1424323630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426167609&rft_id=info:pmid/23553373&rfr_iscdi=true