Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions

When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2013-03, Vol.41 (3), p.547-561
Hauptverfasser: Alavi, S. Hamed, Ruiz, Victor, Krasieva, Tatiana, Botvinick, Elliot L., Kheradvar, Arash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue 3
container_start_page 547
container_title Annals of biomedical engineering
container_volume 41
creator Alavi, S. Hamed
Ruiz, Victor
Krasieva, Tatiana
Botvinick, Elliot L.
Kheradvar, Arash
description When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves' behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space.
doi_str_mv 10.1007/s10439-012-0696-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3963497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323258796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-f440d109845fe9b5b6bab034216a412af0ccf47b1e1e33799e598eedd7e4ff0b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERZfCB-CCInHhEjr-kzi-IKGIAtJW5UDPluOMd11l7WJnK7GfHkdbqoKEevLh_d7zzDxC3lD4QAHkeaYguKqBshpa1daHZ2RFG8lr1Xbtc7ICUFAXQZySlznfAFDa8eYFOWWcdgBMrYjvtyYZO2PyBx821bzFqo_TZDYYqgs_YKqukscwm9nHUPlQfS-oNWn0ZqrWaNyEc66uw1jIS7RbE4palGjGJa-PYfSLNb8iJ85MGV_fv2fk-uLzj_5rvb768q3_tK5tA3yunRAwUlCdaByqoRnawQzABaOtEZQZB9Y6IQeKFDmXSmGjOsRxlCicg4GfkY_H3Nv9sMPRltmTmfRt8juTfulovP5bCX6rN_FOc9VyoWQJeH8fkOLPPeZZ73y2WG4SMO6zppxx1nSy4E-jVHZCKskK-u4f9CbuUyiXWKhWSVqWLhQ9UjbFnBO6h7kp6KVzfexcl8710rk-FM_bxws_OP6UXAB2BHKRwgbTo6__m_obLoC5NQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316971109</pqid></control><display><type>article</type><title>Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Alavi, S. Hamed ; Ruiz, Victor ; Krasieva, Tatiana ; Botvinick, Elliot L. ; Kheradvar, Arash</creator><creatorcontrib>Alavi, S. Hamed ; Ruiz, Victor ; Krasieva, Tatiana ; Botvinick, Elliot L. ; Kheradvar, Arash</creatorcontrib><description>When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves' behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-012-0696-z</identifier><identifier>PMID: 23180029</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biochemistry ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedical Engineering - instrumentation ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Bioprosthesis ; Cattle ; Classical Mechanics ; Collagen - chemistry ; Collagen - physiology ; Equipment Failure Analysis - instrumentation ; Fibers ; Heart Valve Prosthesis ; Humans ; Models, Cardiovascular ; Pericardium - chemistry ; Pericardium - physiology ; Shear stress ; Stress, Mechanical ; Tensile stress ; Tissues</subject><ispartof>Annals of biomedical engineering, 2013-03, Vol.41 (3), p.547-561</ispartof><rights>Biomedical Engineering Society 2012</rights><rights>Biomedical Engineering Society 2013</rights><rights>2012 Biomedical Engineering Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-f440d109845fe9b5b6bab034216a412af0ccf47b1e1e33799e598eedd7e4ff0b3</citedby><cites>FETCH-LOGICAL-c503t-f440d109845fe9b5b6bab034216a412af0ccf47b1e1e33799e598eedd7e4ff0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-012-0696-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-012-0696-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23180029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alavi, S. Hamed</creatorcontrib><creatorcontrib>Ruiz, Victor</creatorcontrib><creatorcontrib>Krasieva, Tatiana</creatorcontrib><creatorcontrib>Botvinick, Elliot L.</creatorcontrib><creatorcontrib>Kheradvar, Arash</creatorcontrib><title>Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves' behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering - instrumentation</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Bioprosthesis</subject><subject>Cattle</subject><subject>Classical Mechanics</subject><subject>Collagen - chemistry</subject><subject>Collagen - physiology</subject><subject>Equipment Failure Analysis - instrumentation</subject><subject>Fibers</subject><subject>Heart Valve Prosthesis</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Pericardium - chemistry</subject><subject>Pericardium - physiology</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Tensile stress</subject><subject>Tissues</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9v1DAQxS1ERZfCB-CCInHhEjr-kzi-IKGIAtJW5UDPluOMd11l7WJnK7GfHkdbqoKEevLh_d7zzDxC3lD4QAHkeaYguKqBshpa1daHZ2RFG8lr1Xbtc7ICUFAXQZySlznfAFDa8eYFOWWcdgBMrYjvtyYZO2PyBx821bzFqo_TZDYYqgs_YKqukscwm9nHUPlQfS-oNWn0ZqrWaNyEc66uw1jIS7RbE4palGjGJa-PYfSLNb8iJ85MGV_fv2fk-uLzj_5rvb768q3_tK5tA3yunRAwUlCdaByqoRnawQzABaOtEZQZB9Y6IQeKFDmXSmGjOsRxlCicg4GfkY_H3Nv9sMPRltmTmfRt8juTfulovP5bCX6rN_FOc9VyoWQJeH8fkOLPPeZZ73y2WG4SMO6zppxx1nSy4E-jVHZCKskK-u4f9CbuUyiXWKhWSVqWLhQ9UjbFnBO6h7kp6KVzfexcl8710rk-FM_bxws_OP6UXAB2BHKRwgbTo6__m_obLoC5NQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Alavi, S. Hamed</creator><creator>Ruiz, Victor</creator><creator>Krasieva, Tatiana</creator><creator>Botvinick, Elliot L.</creator><creator>Kheradvar, Arash</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions</title><author>Alavi, S. Hamed ; Ruiz, Victor ; Krasieva, Tatiana ; Botvinick, Elliot L. ; Kheradvar, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-f440d109845fe9b5b6bab034216a412af0ccf47b1e1e33799e598eedd7e4ff0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering - instrumentation</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Bioprosthesis</topic><topic>Cattle</topic><topic>Classical Mechanics</topic><topic>Collagen - chemistry</topic><topic>Collagen - physiology</topic><topic>Equipment Failure Analysis - instrumentation</topic><topic>Fibers</topic><topic>Heart Valve Prosthesis</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Pericardium - chemistry</topic><topic>Pericardium - physiology</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Tensile stress</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alavi, S. Hamed</creatorcontrib><creatorcontrib>Ruiz, Victor</creatorcontrib><creatorcontrib>Krasieva, Tatiana</creatorcontrib><creatorcontrib>Botvinick, Elliot L.</creatorcontrib><creatorcontrib>Kheradvar, Arash</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alavi, S. Hamed</au><au>Ruiz, Victor</au><au>Krasieva, Tatiana</au><au>Botvinick, Elliot L.</au><au>Kheradvar, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>3</issue><spage>547</spage><epage>561</epage><pages>547-561</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves' behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23180029</pmid><doi>10.1007/s10439-012-0696-z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2013-03, Vol.41 (3), p.547-561
issn 0090-6964
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3963497
source MEDLINE; SpringerNature Journals
subjects Animals
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering - instrumentation
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Bioprosthesis
Cattle
Classical Mechanics
Collagen - chemistry
Collagen - physiology
Equipment Failure Analysis - instrumentation
Fibers
Heart Valve Prosthesis
Humans
Models, Cardiovascular
Pericardium - chemistry
Pericardium - physiology
Shear stress
Stress, Mechanical
Tensile stress
Tissues
title Characterizing the Collagen Fiber Orientation in Pericardial Leaflets Under Mechanical Loading Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20Collagen%20Fiber%20Orientation%20in%20Pericardial%20Leaflets%20Under%20Mechanical%20Loading%20Conditions&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Alavi,%20S.%20Hamed&rft.date=2013-03-01&rft.volume=41&rft.issue=3&rft.spage=547&rft.epage=561&rft.pages=547-561&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-012-0696-z&rft_dat=%3Cproquest_pubme%3E1323258796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316971109&rft_id=info:pmid/23180029&rfr_iscdi=true