Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma

Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2014-04, Vol.187 (2), p.412-426
Hauptverfasser: Blackham, Aaron U., MD, Northrup, Scott A., BS, Willingham, Mark, MD, Sirintrapun, Joseph, MD, Russell, Greg B., MS, Lyles, Douglas S., PhD, Stewart, John H., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 2
container_start_page 412
container_title The Journal of surgical research
container_volume 187
creator Blackham, Aaron U., MD
Northrup, Scott A., BS
Willingham, Mark, MD
Sirintrapun, Joseph, MD
Russell, Greg B., MS
Lyles, Douglas S., PhD
Stewart, John H., MD
description Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P  = 2 × 10−5 ), viral entry ( P  = 3 × 10−4 ), and endocytosis ( P  = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P  
doi_str_mv 10.1016/j.jss.2013.10.032
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3959227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022480413009773</els_id><sourcerecordid>1508425634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</originalsourceid><addsrcrecordid>eNp9UsuO1DAQtBCInV34AC4oRy4Z_EjiWEgrodWyIC3iAJwtx-lAB4892M5I8zd8C1-Go1lWwIGT1e2q6lZVE_KM0S2jrHs5b-eUtpwyUeotFfwB2TCq2rrvpHhINpRyXjc9bc7IeUozLbWS4jE54w1ved-KDfHvgwO7OBOrETLEHXrjc6rCVKUlWdhnHNBhPlY5VMHb4I4ZbXWAhCdWymFnMmZM1QHjkir01d54G6F07c8fZgQfrIkWfQE-IY8m4xI8vXsvyOc315-u3ta3H27eXb2-rW1Lu1xPoxr7phFdO4lhmtTArGmmVsiW9pL1ig9KdIPhVPZcWdFCP0xyNGICMch-kOKCXJ5098uwg9GCz9E4vY-4M_Gog0H994_Hr_pLOGihWsX5KvDiTiCG7wukrHdY7HDOeAhL0qxsUkzsRFOg7AS1MaQUYbofw6hec9KzLjnpNae1VXIqnOd_7nfP-B1MAbw6AaC4dECIOlkEb2HECDbrMeB_5S__YVuHHq1x3-AIaQ5L9MV-zXTimuqP66Gsd8IEpUpKIX4BL7G9lQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508425634</pqid></control><display><type>article</type><title>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Blackham, Aaron U., MD ; Northrup, Scott A., BS ; Willingham, Mark, MD ; Sirintrapun, Joseph, MD ; Russell, Greg B., MS ; Lyles, Douglas S., PhD ; Stewart, John H., MD</creator><creatorcontrib>Blackham, Aaron U., MD ; Northrup, Scott A., BS ; Willingham, Mark, MD ; Sirintrapun, Joseph, MD ; Russell, Greg B., MS ; Lyles, Douglas S., PhD ; Stewart, John H., MD</creatorcontrib><description>Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P  = 2 × 10−5 ), viral entry ( P  = 3 × 10−4 ), and endocytosis ( P  = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P  &lt; 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P  = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV–treated Panc 03.27 xenografts. Conclusions Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo , which may expand its clinical efficacy.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2013.10.032</identifier><identifier>PMID: 24252853</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenocarcinoma - immunology ; Adenocarcinoma - pathology ; Adenocarcinoma - therapy ; Animals ; Antineoplastic Agents - immunology ; Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cell Survival - immunology ; Drug Resistance, Neoplasm ; Endocytosis - immunology ; Humans ; Immunity, Cellular - immunology ; Interferon ; Interferon-beta - immunology ; Interferon-beta - pharmacology ; Lymphocytes - cytology ; Lymphocytes - immunology ; Mice ; Mice, Nude ; Oncolytic Virotherapy - methods ; Pancreatic adenocarcinoma ; Pancreatic Neoplasms - immunology ; Pancreatic Neoplasms - pathology ; Pancreatic Neoplasms - therapy ; Surgery ; Vesicular stomatitis virus ; Viral endocytosis ; Viral Matrix Proteins - immunology ; Viral Matrix Proteins - pharmacology ; Xenograft ; Xenograft Model Antitumor Assays</subject><ispartof>The Journal of surgical research, 2014-04, Vol.187 (2), p.412-426</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</citedby><cites>FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jss.2013.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24252853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackham, Aaron U., MD</creatorcontrib><creatorcontrib>Northrup, Scott A., BS</creatorcontrib><creatorcontrib>Willingham, Mark, MD</creatorcontrib><creatorcontrib>Sirintrapun, Joseph, MD</creatorcontrib><creatorcontrib>Russell, Greg B., MS</creatorcontrib><creatorcontrib>Lyles, Douglas S., PhD</creatorcontrib><creatorcontrib>Stewart, John H., MD</creatorcontrib><title>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P  = 2 × 10−5 ), viral entry ( P  = 3 × 10−4 ), and endocytosis ( P  = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P  &lt; 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P  = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV–treated Panc 03.27 xenografts. Conclusions Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo , which may expand its clinical efficacy.</description><subject>Adenocarcinoma - immunology</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenocarcinoma - therapy</subject><subject>Animals</subject><subject>Antineoplastic Agents - immunology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - immunology</subject><subject>Drug Resistance, Neoplasm</subject><subject>Endocytosis - immunology</subject><subject>Humans</subject><subject>Immunity, Cellular - immunology</subject><subject>Interferon</subject><subject>Interferon-beta - immunology</subject><subject>Interferon-beta - pharmacology</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - immunology</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Oncolytic Virotherapy - methods</subject><subject>Pancreatic adenocarcinoma</subject><subject>Pancreatic Neoplasms - immunology</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pancreatic Neoplasms - therapy</subject><subject>Surgery</subject><subject>Vesicular stomatitis virus</subject><subject>Viral endocytosis</subject><subject>Viral Matrix Proteins - immunology</subject><subject>Viral Matrix Proteins - pharmacology</subject><subject>Xenograft</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UsuO1DAQtBCInV34AC4oRy4Z_EjiWEgrodWyIC3iAJwtx-lAB4892M5I8zd8C1-Go1lWwIGT1e2q6lZVE_KM0S2jrHs5b-eUtpwyUeotFfwB2TCq2rrvpHhINpRyXjc9bc7IeUozLbWS4jE54w1ved-KDfHvgwO7OBOrETLEHXrjc6rCVKUlWdhnHNBhPlY5VMHb4I4ZbXWAhCdWymFnMmZM1QHjkir01d54G6F07c8fZgQfrIkWfQE-IY8m4xI8vXsvyOc315-u3ta3H27eXb2-rW1Lu1xPoxr7phFdO4lhmtTArGmmVsiW9pL1ig9KdIPhVPZcWdFCP0xyNGICMch-kOKCXJ5098uwg9GCz9E4vY-4M_Gog0H994_Hr_pLOGihWsX5KvDiTiCG7wukrHdY7HDOeAhL0qxsUkzsRFOg7AS1MaQUYbofw6hec9KzLjnpNae1VXIqnOd_7nfP-B1MAbw6AaC4dECIOlkEb2HECDbrMeB_5S__YVuHHq1x3-AIaQ5L9MV-zXTimuqP66Gsd8IEpUpKIX4BL7G9lQ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Blackham, Aaron U., MD</creator><creator>Northrup, Scott A., BS</creator><creator>Willingham, Mark, MD</creator><creator>Sirintrapun, Joseph, MD</creator><creator>Russell, Greg B., MS</creator><creator>Lyles, Douglas S., PhD</creator><creator>Stewart, John H., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</title><author>Blackham, Aaron U., MD ; Northrup, Scott A., BS ; Willingham, Mark, MD ; Sirintrapun, Joseph, MD ; Russell, Greg B., MS ; Lyles, Douglas S., PhD ; Stewart, John H., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenocarcinoma - immunology</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenocarcinoma - therapy</topic><topic>Animals</topic><topic>Antineoplastic Agents - immunology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - immunology</topic><topic>Drug Resistance, Neoplasm</topic><topic>Endocytosis - immunology</topic><topic>Humans</topic><topic>Immunity, Cellular - immunology</topic><topic>Interferon</topic><topic>Interferon-beta - immunology</topic><topic>Interferon-beta - pharmacology</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - immunology</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Oncolytic Virotherapy - methods</topic><topic>Pancreatic adenocarcinoma</topic><topic>Pancreatic Neoplasms - immunology</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pancreatic Neoplasms - therapy</topic><topic>Surgery</topic><topic>Vesicular stomatitis virus</topic><topic>Viral endocytosis</topic><topic>Viral Matrix Proteins - immunology</topic><topic>Viral Matrix Proteins - pharmacology</topic><topic>Xenograft</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackham, Aaron U., MD</creatorcontrib><creatorcontrib>Northrup, Scott A., BS</creatorcontrib><creatorcontrib>Willingham, Mark, MD</creatorcontrib><creatorcontrib>Sirintrapun, Joseph, MD</creatorcontrib><creatorcontrib>Russell, Greg B., MS</creatorcontrib><creatorcontrib>Lyles, Douglas S., PhD</creatorcontrib><creatorcontrib>Stewart, John H., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackham, Aaron U., MD</au><au>Northrup, Scott A., BS</au><au>Willingham, Mark, MD</au><au>Sirintrapun, Joseph, MD</au><au>Russell, Greg B., MS</au><au>Lyles, Douglas S., PhD</au><au>Stewart, John H., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>187</volume><issue>2</issue><spage>412</spage><epage>426</epage><pages>412-426</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P  = 2 × 10−5 ), viral entry ( P  = 3 × 10−4 ), and endocytosis ( P  = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P  &lt; 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P  = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV–treated Panc 03.27 xenografts. Conclusions Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo , which may expand its clinical efficacy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24252853</pmid><doi>10.1016/j.jss.2013.10.032</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4804
ispartof The Journal of surgical research, 2014-04, Vol.187 (2), p.412-426
issn 0022-4804
1095-8673
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3959227
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Adenocarcinoma - immunology
Adenocarcinoma - pathology
Adenocarcinoma - therapy
Animals
Antineoplastic Agents - immunology
Antineoplastic Agents - pharmacology
Cell Line, Tumor
Cell Survival - immunology
Drug Resistance, Neoplasm
Endocytosis - immunology
Humans
Immunity, Cellular - immunology
Interferon
Interferon-beta - immunology
Interferon-beta - pharmacology
Lymphocytes - cytology
Lymphocytes - immunology
Mice
Mice, Nude
Oncolytic Virotherapy - methods
Pancreatic adenocarcinoma
Pancreatic Neoplasms - immunology
Pancreatic Neoplasms - pathology
Pancreatic Neoplasms - therapy
Surgery
Vesicular stomatitis virus
Viral endocytosis
Viral Matrix Proteins - immunology
Viral Matrix Proteins - pharmacology
Xenograft
Xenograft Model Antitumor Assays
title Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20determinants%20of%20susceptibility%20to%20oncolytic%20vesicular%20stomatitis%20virus%20in%20pancreatic%C2%A0adenocarcinoma&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Blackham,%20Aaron%20U.,%20MD&rft.date=2014-04-01&rft.volume=187&rft.issue=2&rft.spage=412&rft.epage=426&rft.pages=412-426&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2013.10.032&rft_dat=%3Cproquest_pubme%3E1508425634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508425634&rft_id=info:pmid/24252853&rft_els_id=S0022480413009773&rfr_iscdi=true