Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma
Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma c...
Gespeichert in:
Veröffentlicht in: | The Journal of surgical research 2014-04, Vol.187 (2), p.412-426 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 2 |
container_start_page | 412 |
container_title | The Journal of surgical research |
container_volume | 187 |
creator | Blackham, Aaron U., MD Northrup, Scott A., BS Willingham, Mark, MD Sirintrapun, Joseph, MD Russell, Greg B., MS Lyles, Douglas S., PhD Stewart, John H., MD |
description | Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P = 2 × 10−5 ), viral entry ( P = 3 × 10−4 ), and endocytosis ( P = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P |
doi_str_mv | 10.1016/j.jss.2013.10.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3959227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022480413009773</els_id><sourcerecordid>1508425634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</originalsourceid><addsrcrecordid>eNp9UsuO1DAQtBCInV34AC4oRy4Z_EjiWEgrodWyIC3iAJwtx-lAB4892M5I8zd8C1-Go1lWwIGT1e2q6lZVE_KM0S2jrHs5b-eUtpwyUeotFfwB2TCq2rrvpHhINpRyXjc9bc7IeUozLbWS4jE54w1ved-KDfHvgwO7OBOrETLEHXrjc6rCVKUlWdhnHNBhPlY5VMHb4I4ZbXWAhCdWymFnMmZM1QHjkir01d54G6F07c8fZgQfrIkWfQE-IY8m4xI8vXsvyOc315-u3ta3H27eXb2-rW1Lu1xPoxr7phFdO4lhmtTArGmmVsiW9pL1ig9KdIPhVPZcWdFCP0xyNGICMch-kOKCXJ5098uwg9GCz9E4vY-4M_Gog0H994_Hr_pLOGihWsX5KvDiTiCG7wukrHdY7HDOeAhL0qxsUkzsRFOg7AS1MaQUYbofw6hec9KzLjnpNae1VXIqnOd_7nfP-B1MAbw6AaC4dECIOlkEb2HECDbrMeB_5S__YVuHHq1x3-AIaQ5L9MV-zXTimuqP66Gsd8IEpUpKIX4BL7G9lQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508425634</pqid></control><display><type>article</type><title>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Blackham, Aaron U., MD ; Northrup, Scott A., BS ; Willingham, Mark, MD ; Sirintrapun, Joseph, MD ; Russell, Greg B., MS ; Lyles, Douglas S., PhD ; Stewart, John H., MD</creator><creatorcontrib>Blackham, Aaron U., MD ; Northrup, Scott A., BS ; Willingham, Mark, MD ; Sirintrapun, Joseph, MD ; Russell, Greg B., MS ; Lyles, Douglas S., PhD ; Stewart, John H., MD</creatorcontrib><description>Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P = 2 × 10−5 ), viral entry ( P = 3 × 10−4 ), and endocytosis ( P = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P < 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV–treated Panc 03.27 xenografts. Conclusions Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo , which may expand its clinical efficacy.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2013.10.032</identifier><identifier>PMID: 24252853</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenocarcinoma - immunology ; Adenocarcinoma - pathology ; Adenocarcinoma - therapy ; Animals ; Antineoplastic Agents - immunology ; Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cell Survival - immunology ; Drug Resistance, Neoplasm ; Endocytosis - immunology ; Humans ; Immunity, Cellular - immunology ; Interferon ; Interferon-beta - immunology ; Interferon-beta - pharmacology ; Lymphocytes - cytology ; Lymphocytes - immunology ; Mice ; Mice, Nude ; Oncolytic Virotherapy - methods ; Pancreatic adenocarcinoma ; Pancreatic Neoplasms - immunology ; Pancreatic Neoplasms - pathology ; Pancreatic Neoplasms - therapy ; Surgery ; Vesicular stomatitis virus ; Viral endocytosis ; Viral Matrix Proteins - immunology ; Viral Matrix Proteins - pharmacology ; Xenograft ; Xenograft Model Antitumor Assays</subject><ispartof>The Journal of surgical research, 2014-04, Vol.187 (2), p.412-426</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</citedby><cites>FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jss.2013.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24252853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackham, Aaron U., MD</creatorcontrib><creatorcontrib>Northrup, Scott A., BS</creatorcontrib><creatorcontrib>Willingham, Mark, MD</creatorcontrib><creatorcontrib>Sirintrapun, Joseph, MD</creatorcontrib><creatorcontrib>Russell, Greg B., MS</creatorcontrib><creatorcontrib>Lyles, Douglas S., PhD</creatorcontrib><creatorcontrib>Stewart, John H., MD</creatorcontrib><title>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P = 2 × 10−5 ), viral entry ( P = 3 × 10−4 ), and endocytosis ( P = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P < 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV–treated Panc 03.27 xenografts. Conclusions Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo , which may expand its clinical efficacy.</description><subject>Adenocarcinoma - immunology</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenocarcinoma - therapy</subject><subject>Animals</subject><subject>Antineoplastic Agents - immunology</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - immunology</subject><subject>Drug Resistance, Neoplasm</subject><subject>Endocytosis - immunology</subject><subject>Humans</subject><subject>Immunity, Cellular - immunology</subject><subject>Interferon</subject><subject>Interferon-beta - immunology</subject><subject>Interferon-beta - pharmacology</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - immunology</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Oncolytic Virotherapy - methods</subject><subject>Pancreatic adenocarcinoma</subject><subject>Pancreatic Neoplasms - immunology</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pancreatic Neoplasms - therapy</subject><subject>Surgery</subject><subject>Vesicular stomatitis virus</subject><subject>Viral endocytosis</subject><subject>Viral Matrix Proteins - immunology</subject><subject>Viral Matrix Proteins - pharmacology</subject><subject>Xenograft</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UsuO1DAQtBCInV34AC4oRy4Z_EjiWEgrodWyIC3iAJwtx-lAB4892M5I8zd8C1-Go1lWwIGT1e2q6lZVE_KM0S2jrHs5b-eUtpwyUeotFfwB2TCq2rrvpHhINpRyXjc9bc7IeUozLbWS4jE54w1ved-KDfHvgwO7OBOrETLEHXrjc6rCVKUlWdhnHNBhPlY5VMHb4I4ZbXWAhCdWymFnMmZM1QHjkir01d54G6F07c8fZgQfrIkWfQE-IY8m4xI8vXsvyOc315-u3ta3H27eXb2-rW1Lu1xPoxr7phFdO4lhmtTArGmmVsiW9pL1ig9KdIPhVPZcWdFCP0xyNGICMch-kOKCXJ5098uwg9GCz9E4vY-4M_Gog0H994_Hr_pLOGihWsX5KvDiTiCG7wukrHdY7HDOeAhL0qxsUkzsRFOg7AS1MaQUYbofw6hec9KzLjnpNae1VXIqnOd_7nfP-B1MAbw6AaC4dECIOlkEb2HECDbrMeB_5S__YVuHHq1x3-AIaQ5L9MV-zXTimuqP66Gsd8IEpUpKIX4BL7G9lQ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Blackham, Aaron U., MD</creator><creator>Northrup, Scott A., BS</creator><creator>Willingham, Mark, MD</creator><creator>Sirintrapun, Joseph, MD</creator><creator>Russell, Greg B., MS</creator><creator>Lyles, Douglas S., PhD</creator><creator>Stewart, John H., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</title><author>Blackham, Aaron U., MD ; Northrup, Scott A., BS ; Willingham, Mark, MD ; Sirintrapun, Joseph, MD ; Russell, Greg B., MS ; Lyles, Douglas S., PhD ; Stewart, John H., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-fd9d844365f3bff9b1ca4f53750871892b936ba207829c35e8bf7da3fe3b78b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenocarcinoma - immunology</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenocarcinoma - therapy</topic><topic>Animals</topic><topic>Antineoplastic Agents - immunology</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - immunology</topic><topic>Drug Resistance, Neoplasm</topic><topic>Endocytosis - immunology</topic><topic>Humans</topic><topic>Immunity, Cellular - immunology</topic><topic>Interferon</topic><topic>Interferon-beta - immunology</topic><topic>Interferon-beta - pharmacology</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - immunology</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Oncolytic Virotherapy - methods</topic><topic>Pancreatic adenocarcinoma</topic><topic>Pancreatic Neoplasms - immunology</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pancreatic Neoplasms - therapy</topic><topic>Surgery</topic><topic>Vesicular stomatitis virus</topic><topic>Viral endocytosis</topic><topic>Viral Matrix Proteins - immunology</topic><topic>Viral Matrix Proteins - pharmacology</topic><topic>Xenograft</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackham, Aaron U., MD</creatorcontrib><creatorcontrib>Northrup, Scott A., BS</creatorcontrib><creatorcontrib>Willingham, Mark, MD</creatorcontrib><creatorcontrib>Sirintrapun, Joseph, MD</creatorcontrib><creatorcontrib>Russell, Greg B., MS</creatorcontrib><creatorcontrib>Lyles, Douglas S., PhD</creatorcontrib><creatorcontrib>Stewart, John H., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackham, Aaron U., MD</au><au>Northrup, Scott A., BS</au><au>Willingham, Mark, MD</au><au>Sirintrapun, Joseph, MD</au><au>Russell, Greg B., MS</au><au>Lyles, Douglas S., PhD</au><au>Stewart, John H., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>187</volume><issue>2</issue><spage>412</spage><epage>426</epage><pages>412-426</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. Methods Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. Results Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling ( P = 2 × 10−5 ), viral entry ( P = 3 × 10−4 ), and endocytosis ( P = 7 × 10−4 ). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P < 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV–treated Panc 03.27 xenografts. Conclusions Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo , which may expand its clinical efficacy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24252853</pmid><doi>10.1016/j.jss.2013.10.032</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4804 |
ispartof | The Journal of surgical research, 2014-04, Vol.187 (2), p.412-426 |
issn | 0022-4804 1095-8673 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3959227 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Adenocarcinoma - immunology Adenocarcinoma - pathology Adenocarcinoma - therapy Animals Antineoplastic Agents - immunology Antineoplastic Agents - pharmacology Cell Line, Tumor Cell Survival - immunology Drug Resistance, Neoplasm Endocytosis - immunology Humans Immunity, Cellular - immunology Interferon Interferon-beta - immunology Interferon-beta - pharmacology Lymphocytes - cytology Lymphocytes - immunology Mice Mice, Nude Oncolytic Virotherapy - methods Pancreatic adenocarcinoma Pancreatic Neoplasms - immunology Pancreatic Neoplasms - pathology Pancreatic Neoplasms - therapy Surgery Vesicular stomatitis virus Viral endocytosis Viral Matrix Proteins - immunology Viral Matrix Proteins - pharmacology Xenograft Xenograft Model Antitumor Assays |
title | Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20determinants%20of%20susceptibility%20to%20oncolytic%20vesicular%20stomatitis%20virus%20in%20pancreatic%C2%A0adenocarcinoma&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Blackham,%20Aaron%20U.,%20MD&rft.date=2014-04-01&rft.volume=187&rft.issue=2&rft.spage=412&rft.epage=426&rft.pages=412-426&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2013.10.032&rft_dat=%3Cproquest_pubme%3E1508425634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508425634&rft_id=info:pmid/24252853&rft_els_id=S0022480413009773&rfr_iscdi=true |