A novel significance score for gene selection and ranking

When identifying differentially expressed (DE) genes from high-throughput gene expression measurements, we would like to take both statistical significance (such as P-value) and biological relevance (such as fold change) into consideration. In gene set enrichment analysis (GSEA), a score that can co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2014-03, Vol.30 (6), p.801-807
Hauptverfasser: Xiao, Yufei, Hsiao, Tzu-Hung, Suresh, Uthra, Chen, Hung-I Harry, Wu, Xiaowu, Wolf, Steven E, Chen, Yidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 6
container_start_page 801
container_title Bioinformatics
container_volume 30
creator Xiao, Yufei
Hsiao, Tzu-Hung
Suresh, Uthra
Chen, Hung-I Harry
Wu, Xiaowu
Wolf, Steven E
Chen, Yidong
description When identifying differentially expressed (DE) genes from high-throughput gene expression measurements, we would like to take both statistical significance (such as P-value) and biological relevance (such as fold change) into consideration. In gene set enrichment analysis (GSEA), a score that can combine fold change and P-value together is needed for better gene ranking. We defined a gene significance score π-value by combining expression fold change and statistical significance (P-value), and explored its statistical properties. When compared to various existing methods, π-value based approach is more robust in selecting DE genes, with the largest area under curve in its receiver operating characteristic curve. We applied π-value to GSEA and found it comparable to P-value and t-statistic based methods, with added protection against false discovery in certain situations. Finally, in a gene functional study of breast cancer profiles, we showed that using π-value helps elucidating otherwise overlooked important biological functions. http://gccri.uthscsa.edu/Pi_Value_Supplementary.asp xy@ieee.org, cheny8@uthscsa.edu Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btr671
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3957066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508943105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-fa1a81f5fa51f166e84c12b5e48fdc0150ee314bbb08306b0b6e13e7f34db1dc3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWj9-grJHL9XMZpPNXoRS_IKCFz2HJDup0W1Sk23Bf2-ltdiTnmaGed-XGR5CzoFeAW3YtfHRBxfTTPfe5mvTJ1HDHhkAE_WwkgD7256yI3Kc8xullFMuDslRWbISRNMMSDMqQlxiV2Q_Dd55q4PFItuYsFilF1MMqxE7tL2PodChLZIO7z5MT8mB013Gs009IS93t8_jh-Hk6f5xPJoMLa9YP3QatATHnebgQAiUlYXScKykay0FThEZVMYYKhkVhhqBwLB2rGoNtJadkJt17nxhZthaDH3SnZonP9PpU0Xt1e4m-Fc1jUvFGl5TIVYBl5uAFD8WmHs189li1-mAcZEV1FKArMqm_lvKQdRMMsn_IaWyqRjQbylfS22KOSd02-OBqm-YahemWsNc-S5-f751_dBjX7meoRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508943105</pqid></control><display><type>article</type><title>A novel significance score for gene selection and ranking</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Xiao, Yufei ; Hsiao, Tzu-Hung ; Suresh, Uthra ; Chen, Hung-I Harry ; Wu, Xiaowu ; Wolf, Steven E ; Chen, Yidong</creator><creatorcontrib>Xiao, Yufei ; Hsiao, Tzu-Hung ; Suresh, Uthra ; Chen, Hung-I Harry ; Wu, Xiaowu ; Wolf, Steven E ; Chen, Yidong</creatorcontrib><description>When identifying differentially expressed (DE) genes from high-throughput gene expression measurements, we would like to take both statistical significance (such as P-value) and biological relevance (such as fold change) into consideration. In gene set enrichment analysis (GSEA), a score that can combine fold change and P-value together is needed for better gene ranking. We defined a gene significance score π-value by combining expression fold change and statistical significance (P-value), and explored its statistical properties. When compared to various existing methods, π-value based approach is more robust in selecting DE genes, with the largest area under curve in its receiver operating characteristic curve. We applied π-value to GSEA and found it comparable to P-value and t-statistic based methods, with added protection against false discovery in certain situations. Finally, in a gene functional study of breast cancer profiles, we showed that using π-value helps elucidating otherwise overlooked important biological functions. http://gccri.uthscsa.edu/Pi_Value_Supplementary.asp xy@ieee.org, cheny8@uthscsa.edu Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btr671</identifier><identifier>PMID: 22321699</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bioinformatics ; Biological ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Cancer ; Databases, Genetic ; Gene Expression ; Gene Expression Profiling - methods ; Genes ; Humans ; Oligonucleotide Array Sequence Analysis - methods ; On-line systems ; Online ; Original Papers ; Receivers ; Receptors, Estrogen - metabolism ; ROC Curve</subject><ispartof>Bioinformatics, 2014-03, Vol.30 (6), p.801-807</ispartof><rights>The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-fa1a81f5fa51f166e84c12b5e48fdc0150ee314bbb08306b0b6e13e7f34db1dc3</citedby><cites>FETCH-LOGICAL-c543t-fa1a81f5fa51f166e84c12b5e48fdc0150ee314bbb08306b0b6e13e7f34db1dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957066/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957066/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22321699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yufei</creatorcontrib><creatorcontrib>Hsiao, Tzu-Hung</creatorcontrib><creatorcontrib>Suresh, Uthra</creatorcontrib><creatorcontrib>Chen, Hung-I Harry</creatorcontrib><creatorcontrib>Wu, Xiaowu</creatorcontrib><creatorcontrib>Wolf, Steven E</creatorcontrib><creatorcontrib>Chen, Yidong</creatorcontrib><title>A novel significance score for gene selection and ranking</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>When identifying differentially expressed (DE) genes from high-throughput gene expression measurements, we would like to take both statistical significance (such as P-value) and biological relevance (such as fold change) into consideration. In gene set enrichment analysis (GSEA), a score that can combine fold change and P-value together is needed for better gene ranking. We defined a gene significance score π-value by combining expression fold change and statistical significance (P-value), and explored its statistical properties. When compared to various existing methods, π-value based approach is more robust in selecting DE genes, with the largest area under curve in its receiver operating characteristic curve. We applied π-value to GSEA and found it comparable to P-value and t-statistic based methods, with added protection against false discovery in certain situations. Finally, in a gene functional study of breast cancer profiles, we showed that using π-value helps elucidating otherwise overlooked important biological functions. http://gccri.uthscsa.edu/Pi_Value_Supplementary.asp xy@ieee.org, cheny8@uthscsa.edu Supplementary data are available at Bioinformatics online.</description><subject>Bioinformatics</subject><subject>Biological</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cancer</subject><subject>Databases, Genetic</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genes</subject><subject>Humans</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>On-line systems</subject><subject>Online</subject><subject>Original Papers</subject><subject>Receivers</subject><subject>Receptors, Estrogen - metabolism</subject><subject>ROC Curve</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LAzEQhoMoWj9-grJHL9XMZpPNXoRS_IKCFz2HJDup0W1Sk23Bf2-ltdiTnmaGed-XGR5CzoFeAW3YtfHRBxfTTPfe5mvTJ1HDHhkAE_WwkgD7256yI3Kc8xullFMuDslRWbISRNMMSDMqQlxiV2Q_Dd55q4PFItuYsFilF1MMqxE7tL2PodChLZIO7z5MT8mB013Gs009IS93t8_jh-Hk6f5xPJoMLa9YP3QatATHnebgQAiUlYXScKykay0FThEZVMYYKhkVhhqBwLB2rGoNtJadkJt17nxhZthaDH3SnZonP9PpU0Xt1e4m-Fc1jUvFGl5TIVYBl5uAFD8WmHs189li1-mAcZEV1FKArMqm_lvKQdRMMsn_IaWyqRjQbylfS22KOSd02-OBqm-YahemWsNc-S5-f751_dBjX7meoRs</recordid><startdate>20140315</startdate><enddate>20140315</enddate><creator>Xiao, Yufei</creator><creator>Hsiao, Tzu-Hung</creator><creator>Suresh, Uthra</creator><creator>Chen, Hung-I Harry</creator><creator>Wu, Xiaowu</creator><creator>Wolf, Steven E</creator><creator>Chen, Yidong</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20140315</creationdate><title>A novel significance score for gene selection and ranking</title><author>Xiao, Yufei ; Hsiao, Tzu-Hung ; Suresh, Uthra ; Chen, Hung-I Harry ; Wu, Xiaowu ; Wolf, Steven E ; Chen, Yidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-fa1a81f5fa51f166e84c12b5e48fdc0150ee314bbb08306b0b6e13e7f34db1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bioinformatics</topic><topic>Biological</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cancer</topic><topic>Databases, Genetic</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genes</topic><topic>Humans</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>On-line systems</topic><topic>Online</topic><topic>Original Papers</topic><topic>Receivers</topic><topic>Receptors, Estrogen - metabolism</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yufei</creatorcontrib><creatorcontrib>Hsiao, Tzu-Hung</creatorcontrib><creatorcontrib>Suresh, Uthra</creatorcontrib><creatorcontrib>Chen, Hung-I Harry</creatorcontrib><creatorcontrib>Wu, Xiaowu</creatorcontrib><creatorcontrib>Wolf, Steven E</creatorcontrib><creatorcontrib>Chen, Yidong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yufei</au><au>Hsiao, Tzu-Hung</au><au>Suresh, Uthra</au><au>Chen, Hung-I Harry</au><au>Wu, Xiaowu</au><au>Wolf, Steven E</au><au>Chen, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel significance score for gene selection and ranking</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2014-03-15</date><risdate>2014</risdate><volume>30</volume><issue>6</issue><spage>801</spage><epage>807</epage><pages>801-807</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>When identifying differentially expressed (DE) genes from high-throughput gene expression measurements, we would like to take both statistical significance (such as P-value) and biological relevance (such as fold change) into consideration. In gene set enrichment analysis (GSEA), a score that can combine fold change and P-value together is needed for better gene ranking. We defined a gene significance score π-value by combining expression fold change and statistical significance (P-value), and explored its statistical properties. When compared to various existing methods, π-value based approach is more robust in selecting DE genes, with the largest area under curve in its receiver operating characteristic curve. We applied π-value to GSEA and found it comparable to P-value and t-statistic based methods, with added protection against false discovery in certain situations. Finally, in a gene functional study of breast cancer profiles, we showed that using π-value helps elucidating otherwise overlooked important biological functions. http://gccri.uthscsa.edu/Pi_Value_Supplementary.asp xy@ieee.org, cheny8@uthscsa.edu Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22321699</pmid><doi>10.1093/bioinformatics/btr671</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2014-03, Vol.30 (6), p.801-807
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3957066
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Bioinformatics
Biological
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cancer
Databases, Genetic
Gene Expression
Gene Expression Profiling - methods
Genes
Humans
Oligonucleotide Array Sequence Analysis - methods
On-line systems
Online
Original Papers
Receivers
Receptors, Estrogen - metabolism
ROC Curve
title A novel significance score for gene selection and ranking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20significance%20score%20for%20gene%20selection%20and%20ranking&rft.jtitle=Bioinformatics&rft.au=Xiao,%20Yufei&rft.date=2014-03-15&rft.volume=30&rft.issue=6&rft.spage=801&rft.epage=807&rft.pages=801-807&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btr671&rft_dat=%3Cproquest_pubme%3E1508943105%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508943105&rft_id=info:pmid/22321699&rfr_iscdi=true