Complete DNA sequence of yeast chromosome II

In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 1994-12, Vol.13 (24), p.5795-5809
Hauptverfasser: Feldmann, H, Aigle, M, Aljinovic, G, Andre, B, Baclet, M.C, Barthe, C, Baur, A, Becam, A.M, Biteau, N, Boles, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5809
container_issue 24
container_start_page 5795
container_title The EMBO journal
container_volume 13
creator Feldmann, H
Aigle, M
Aljinovic, G
Andre, B
Baclet, M.C
Barthe, C
Baur, A
Becam, A.M
Biteau, N
Boles, E
description In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms or are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands in biased, with a ratio of 1.3.1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that redundancy, amounting to 16% of the coding capacity.
doi_str_mv 10.1002/j.1460-2075.1994.tb06923.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_395553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76926754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5333-c31664ebb6cf295042fa3353a64e45de0e36c9a743635e2df23ee3ffa32a76393</originalsourceid><addsrcrecordid>eNqVUU1vEzEUtBCoTQM_AXXFgVN3sf38ka3UQ0hbCCpwgJ6fHOdtu9FuHNYb2vz7OiSK4FRxsvVm3ujNDGPvBC8E5_LDohDK8FxyqwtRlqroZ9yUEorHF2xwgF6yAZdG5EqMymN2EuOCc65HVhyxIzsSkOYDdjYJ7aqhnrLLb-Ms0q81LT1loco25GKf-fsutCGGlrLp9DV7Vbkm0pv9O2S311c_J5_zm--fppPxTe41AOQehDGKZjPjK1lqrmTlADS4NFR6TpzA-NJZBQY0yXklgQiqRJLOGihhyC52uqv1rKW5p2XfuQZXXd26boPB1fgvsqzv8S78Rii1TicM2fv9fheSodhjW0dPTeOWFNYRbQrLWK2eJSYfVoLSiXi-I_ouxNhRdThGcNx2ggvcBo_b4HHbCe47wce0_PZvO4fVfQkJH-_wh7qhzX8o49XXj1_-_JPG6U6jcgHdXVdHvP0huQAuNOfWangC4sWlMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16672345</pqid></control><display><type>article</type><title>Complete DNA sequence of yeast chromosome II</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Feldmann, H ; Aigle, M ; Aljinovic, G ; Andre, B ; Baclet, M.C ; Barthe, C ; Baur, A ; Becam, A.M ; Biteau, N ; Boles, E</creator><creatorcontrib>Feldmann, H ; Aigle, M ; Aljinovic, G ; Andre, B ; Baclet, M.C ; Barthe, C ; Baur, A ; Becam, A.M ; Biteau, N ; Boles, E</creatorcontrib><description>In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms or are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands in biased, with a ratio of 1.3.1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that redundancy, amounting to 16% of the coding capacity.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1002/j.1460-2075.1994.tb06923.x</identifier><identifier>PMID: 7813418</identifier><language>eng</language><publisher>England</publisher><subject>amino acid sequences ; Base Composition ; Base Sequence ; chromosome mapping ; Chromosome Mapping - methods ; chromosomes ; Chromosomes, Fungal - genetics ; Cloning, Molecular ; Cosmids - genetics ; DNA, Fungal - genetics ; gene density ; Genes, Fungal - genetics ; Molecular Sequence Data ; nucleotide sequences ; Open Reading Frames ; proteins ; Quality Control ; Repetitive Sequences, Nucleic Acid ; Reproducibility of Results ; retrotransposons ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; structural genes ; Telomere - genetics</subject><ispartof>The EMBO journal, 1994-12, Vol.13 (24), p.5795-5809</ispartof><rights>1994 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5333-c31664ebb6cf295042fa3353a64e45de0e36c9a743635e2df23ee3ffa32a76393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC395553/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC395553/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7813418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feldmann, H</creatorcontrib><creatorcontrib>Aigle, M</creatorcontrib><creatorcontrib>Aljinovic, G</creatorcontrib><creatorcontrib>Andre, B</creatorcontrib><creatorcontrib>Baclet, M.C</creatorcontrib><creatorcontrib>Barthe, C</creatorcontrib><creatorcontrib>Baur, A</creatorcontrib><creatorcontrib>Becam, A.M</creatorcontrib><creatorcontrib>Biteau, N</creatorcontrib><creatorcontrib>Boles, E</creatorcontrib><title>Complete DNA sequence of yeast chromosome II</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms or are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands in biased, with a ratio of 1.3.1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that redundancy, amounting to 16% of the coding capacity.</description><subject>amino acid sequences</subject><subject>Base Composition</subject><subject>Base Sequence</subject><subject>chromosome mapping</subject><subject>Chromosome Mapping - methods</subject><subject>chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Cloning, Molecular</subject><subject>Cosmids - genetics</subject><subject>DNA, Fungal - genetics</subject><subject>gene density</subject><subject>Genes, Fungal - genetics</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Open Reading Frames</subject><subject>proteins</subject><subject>Quality Control</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Reproducibility of Results</subject><subject>retrotransposons</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>structural genes</subject><subject>Telomere - genetics</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVUU1vEzEUtBCoTQM_AXXFgVN3sf38ka3UQ0hbCCpwgJ6fHOdtu9FuHNYb2vz7OiSK4FRxsvVm3ujNDGPvBC8E5_LDohDK8FxyqwtRlqroZ9yUEorHF2xwgF6yAZdG5EqMymN2EuOCc65HVhyxIzsSkOYDdjYJ7aqhnrLLb-Ms0q81LT1loco25GKf-fsutCGGlrLp9DV7Vbkm0pv9O2S311c_J5_zm--fppPxTe41AOQehDGKZjPjK1lqrmTlADS4NFR6TpzA-NJZBQY0yXklgQiqRJLOGihhyC52uqv1rKW5p2XfuQZXXd26boPB1fgvsqzv8S78Rii1TicM2fv9fheSodhjW0dPTeOWFNYRbQrLWK2eJSYfVoLSiXi-I_ouxNhRdThGcNx2ggvcBo_b4HHbCe47wce0_PZvO4fVfQkJH-_wh7qhzX8o49XXj1_-_JPG6U6jcgHdXVdHvP0huQAuNOfWangC4sWlMw</recordid><startdate>19941215</startdate><enddate>19941215</enddate><creator>Feldmann, H</creator><creator>Aigle, M</creator><creator>Aljinovic, G</creator><creator>Andre, B</creator><creator>Baclet, M.C</creator><creator>Barthe, C</creator><creator>Baur, A</creator><creator>Becam, A.M</creator><creator>Biteau, N</creator><creator>Boles, E</creator><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19941215</creationdate><title>Complete DNA sequence of yeast chromosome II</title><author>Feldmann, H ; Aigle, M ; Aljinovic, G ; Andre, B ; Baclet, M.C ; Barthe, C ; Baur, A ; Becam, A.M ; Biteau, N ; Boles, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5333-c31664ebb6cf295042fa3353a64e45de0e36c9a743635e2df23ee3ffa32a76393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>amino acid sequences</topic><topic>Base Composition</topic><topic>Base Sequence</topic><topic>chromosome mapping</topic><topic>Chromosome Mapping - methods</topic><topic>chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Cloning, Molecular</topic><topic>Cosmids - genetics</topic><topic>DNA, Fungal - genetics</topic><topic>gene density</topic><topic>Genes, Fungal - genetics</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Open Reading Frames</topic><topic>proteins</topic><topic>Quality Control</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Reproducibility of Results</topic><topic>retrotransposons</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>structural genes</topic><topic>Telomere - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldmann, H</creatorcontrib><creatorcontrib>Aigle, M</creatorcontrib><creatorcontrib>Aljinovic, G</creatorcontrib><creatorcontrib>Andre, B</creatorcontrib><creatorcontrib>Baclet, M.C</creatorcontrib><creatorcontrib>Barthe, C</creatorcontrib><creatorcontrib>Baur, A</creatorcontrib><creatorcontrib>Becam, A.M</creatorcontrib><creatorcontrib>Biteau, N</creatorcontrib><creatorcontrib>Boles, E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldmann, H</au><au>Aigle, M</au><au>Aljinovic, G</au><au>Andre, B</au><au>Baclet, M.C</au><au>Barthe, C</au><au>Baur, A</au><au>Becam, A.M</au><au>Biteau, N</au><au>Boles, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete DNA sequence of yeast chromosome II</atitle><jtitle>The EMBO journal</jtitle><addtitle>EMBO J</addtitle><date>1994-12-15</date><risdate>1994</risdate><volume>13</volume><issue>24</issue><spage>5795</spage><epage>5809</epage><pages>5795-5809</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms or are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands in biased, with a ratio of 1.3.1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that redundancy, amounting to 16% of the coding capacity.</abstract><cop>England</cop><pmid>7813418</pmid><doi>10.1002/j.1460-2075.1994.tb06923.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1994-12, Vol.13 (24), p.5795-5809
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_395553
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects amino acid sequences
Base Composition
Base Sequence
chromosome mapping
Chromosome Mapping - methods
chromosomes
Chromosomes, Fungal - genetics
Cloning, Molecular
Cosmids - genetics
DNA, Fungal - genetics
gene density
Genes, Fungal - genetics
Molecular Sequence Data
nucleotide sequences
Open Reading Frames
proteins
Quality Control
Repetitive Sequences, Nucleic Acid
Reproducibility of Results
retrotransposons
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Sequence Analysis, DNA
Sequence Homology, Amino Acid
structural genes
Telomere - genetics
title Complete DNA sequence of yeast chromosome II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20DNA%20sequence%20of%20yeast%20chromosome%20II&rft.jtitle=The%20EMBO%20journal&rft.au=Feldmann,%20H&rft.date=1994-12-15&rft.volume=13&rft.issue=24&rft.spage=5795&rft.epage=5809&rft.pages=5795-5809&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.1002/j.1460-2075.1994.tb06923.x&rft_dat=%3Cproquest_pubme%3E76926754%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16672345&rft_id=info:pmid/7813418&rfr_iscdi=true