Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties
Abstract Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independe...
Gespeichert in:
Veröffentlicht in: | Bone (New York, N.Y.) N.Y.), 2014-04, Vol.61, p.191-200 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | |
container_start_page | 191 |
container_title | Bone (New York, N.Y.) |
container_volume | 61 |
creator | Gallant, Maxime A Brown, Drew M Hammond, Max Wallace, Joseph M Du, Jiang Deymier-Black, Alix C Almer, Jonathan D Stock, Stuart R Allen, Matthew R Burr, David B |
description | Abstract Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups ( OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. |
doi_str_mv | 10.1016/j.bone.2014.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3955028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S8756328214000118</els_id><sourcerecordid>1504152672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-76aa610cdc187346ff1a764fe01aa4af2db5e4745afc076c7110b39a959b85293</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhD3BAviD1ksXj2HGCUKVSQUGqxAE4W44z7nqb2Iudjei_x9EupXDgYkv2M-98vFMUL4GugUL9Zrvugsc1o8DXFNaUto-KFTSyKpmsq8fFqpGiLivWsJPiWUpbSmnVSnhanDDO60ZCuyrm91mCGByG0vked5gPP5EOPVo3JRIsiXoIP53NLyR4Mm2QpFsccAr-LbkgPsw4kBHNRnuXRmJDJG7cxTA7f0OWAsmoJ4xODyS_7jBODtPz4onVQ8IXx_u0-P7xw7fLT-X1l6vPlxfXpRGcTqWsta6Bmt4sbfHaWtCy5hYpaM21ZX0nkEsutDVU1kYC0K5qdSvarhGsrU6L84Pubt-N2JvcW25H7aIbdbxTQTv19493G3UTZlW1QlDWZIGzo0AMP_aYJjW6tIxLewz7pEBQDoLVkmWUHVATQ0oR7X0aoGoxTG3VMg-1GKYoqGxYDnr1sMD7kN8OZeD1EdDJ6MFG7Y1Lf7imqiQVC_fuwGEe5-wwqmQceoO9i2gm1Qf3_zrO_wk3g_MuZ7zFO0zbsI8-G6VAJaao-rqs1rJZwPNWATTVL3yKy80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504152672</pqid></control><display><type>article</type><title>Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gallant, Maxime A ; Brown, Drew M ; Hammond, Max ; Wallace, Joseph M ; Du, Jiang ; Deymier-Black, Alix C ; Almer, Jonathan D ; Stock, Stuart R ; Allen, Matthew R ; Burr, David B</creator><creatorcontrib>Gallant, Maxime A ; Brown, Drew M ; Hammond, Max ; Wallace, Joseph M ; Du, Jiang ; Deymier-Black, Alix C ; Almer, Jonathan D ; Stock, Stuart R ; Allen, Matthew R ; Burr, David B</creatorcontrib><description>Abstract Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups ( OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.</description><identifier>ISSN: 8756-3282</identifier><identifier>EISSN: 1873-2763</identifier><identifier>DOI: 10.1016/j.bone.2014.01.009</identifier><identifier>PMID: 24468719</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Bone and Bones - drug effects ; Bone Density Conservation Agents - pharmacology ; Dogs ; Extracellular Matrix - drug effects ; Fundamental and applied biological sciences. Psychology ; Humans ; Mechanical testing ; Orthopedics ; Raloxifene ; Raloxifene Hydrochloride - pharmacology ; Skeleton ; Toughness ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Water</subject><ispartof>Bone (New York, N.Y.), 2014-04, Vol.61, p.191-200</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-76aa610cdc187346ff1a764fe01aa4af2db5e4745afc076c7110b39a959b85293</citedby><cites>FETCH-LOGICAL-c540t-76aa610cdc187346ff1a764fe01aa4af2db5e4745afc076c7110b39a959b85293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S8756328214000118$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28337059$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24468719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallant, Maxime A</creatorcontrib><creatorcontrib>Brown, Drew M</creatorcontrib><creatorcontrib>Hammond, Max</creatorcontrib><creatorcontrib>Wallace, Joseph M</creatorcontrib><creatorcontrib>Du, Jiang</creatorcontrib><creatorcontrib>Deymier-Black, Alix C</creatorcontrib><creatorcontrib>Almer, Jonathan D</creatorcontrib><creatorcontrib>Stock, Stuart R</creatorcontrib><creatorcontrib>Allen, Matthew R</creatorcontrib><creatorcontrib>Burr, David B</creatorcontrib><title>Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties</title><title>Bone (New York, N.Y.)</title><addtitle>Bone</addtitle><description>Abstract Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups ( OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Bone and Bones - drug effects</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Dogs</subject><subject>Extracellular Matrix - drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Mechanical testing</subject><subject>Orthopedics</subject><subject>Raloxifene</subject><subject>Raloxifene Hydrochloride - pharmacology</subject><subject>Skeleton</subject><subject>Toughness</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Water</subject><issn>8756-3282</issn><issn>1873-2763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk1v1DAQhiMEokvhD3BAviD1ksXj2HGCUKVSQUGqxAE4W44z7nqb2Iudjei_x9EupXDgYkv2M-98vFMUL4GugUL9Zrvugsc1o8DXFNaUto-KFTSyKpmsq8fFqpGiLivWsJPiWUpbSmnVSnhanDDO60ZCuyrm91mCGByG0vked5gPP5EOPVo3JRIsiXoIP53NLyR4Mm2QpFsccAr-LbkgPsw4kBHNRnuXRmJDJG7cxTA7f0OWAsmoJ4xODyS_7jBODtPz4onVQ8IXx_u0-P7xw7fLT-X1l6vPlxfXpRGcTqWsta6Bmt4sbfHaWtCy5hYpaM21ZX0nkEsutDVU1kYC0K5qdSvarhGsrU6L84Pubt-N2JvcW25H7aIbdbxTQTv19493G3UTZlW1QlDWZIGzo0AMP_aYJjW6tIxLewz7pEBQDoLVkmWUHVATQ0oR7X0aoGoxTG3VMg-1GKYoqGxYDnr1sMD7kN8OZeD1EdDJ6MFG7Y1Lf7imqiQVC_fuwGEe5-wwqmQceoO9i2gm1Qf3_zrO_wk3g_MuZ7zFO0zbsI8-G6VAJaao-rqs1rJZwPNWATTVL3yKy80</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Gallant, Maxime A</creator><creator>Brown, Drew M</creator><creator>Hammond, Max</creator><creator>Wallace, Joseph M</creator><creator>Du, Jiang</creator><creator>Deymier-Black, Alix C</creator><creator>Almer, Jonathan D</creator><creator>Stock, Stuart R</creator><creator>Allen, Matthew R</creator><creator>Burr, David B</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140401</creationdate><title>Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties</title><author>Gallant, Maxime A ; Brown, Drew M ; Hammond, Max ; Wallace, Joseph M ; Du, Jiang ; Deymier-Black, Alix C ; Almer, Jonathan D ; Stock, Stuart R ; Allen, Matthew R ; Burr, David B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-76aa610cdc187346ff1a764fe01aa4af2db5e4745afc076c7110b39a959b85293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Bone and Bones - drug effects</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Dogs</topic><topic>Extracellular Matrix - drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Mechanical testing</topic><topic>Orthopedics</topic><topic>Raloxifene</topic><topic>Raloxifene Hydrochloride - pharmacology</topic><topic>Skeleton</topic><topic>Toughness</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallant, Maxime A</creatorcontrib><creatorcontrib>Brown, Drew M</creatorcontrib><creatorcontrib>Hammond, Max</creatorcontrib><creatorcontrib>Wallace, Joseph M</creatorcontrib><creatorcontrib>Du, Jiang</creatorcontrib><creatorcontrib>Deymier-Black, Alix C</creatorcontrib><creatorcontrib>Almer, Jonathan D</creatorcontrib><creatorcontrib>Stock, Stuart R</creatorcontrib><creatorcontrib>Allen, Matthew R</creatorcontrib><creatorcontrib>Burr, David B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bone (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallant, Maxime A</au><au>Brown, Drew M</au><au>Hammond, Max</au><au>Wallace, Joseph M</au><au>Du, Jiang</au><au>Deymier-Black, Alix C</au><au>Almer, Jonathan D</au><au>Stock, Stuart R</au><au>Allen, Matthew R</au><au>Burr, David B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties</atitle><jtitle>Bone (New York, N.Y.)</jtitle><addtitle>Bone</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>61</volume><spage>191</spage><epage>200</epage><pages>191-200</pages><issn>8756-3282</issn><eissn>1873-2763</eissn><abstract>Abstract Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups ( OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>24468719</pmid><doi>10.1016/j.bone.2014.01.009</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-3282 |
ispartof | Bone (New York, N.Y.), 2014-04, Vol.61, p.191-200 |
issn | 8756-3282 1873-2763 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3955028 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Biological and medical sciences Biomechanical Phenomena Bone and Bones - drug effects Bone Density Conservation Agents - pharmacology Dogs Extracellular Matrix - drug effects Fundamental and applied biological sciences. Psychology Humans Mechanical testing Orthopedics Raloxifene Raloxifene Hydrochloride - pharmacology Skeleton Toughness Vertebrates: anatomy and physiology, studies on body, several organs or systems Water |
title | Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20cell-independent%20benefits%20of%20raloxifene%20on%20the%20skeleton:%20A%20novel%20mechanism%20for%20improving%20bone%20material%20properties&rft.jtitle=Bone%20(New%20York,%20N.Y.)&rft.au=Gallant,%20Maxime%20A&rft.date=2014-04-01&rft.volume=61&rft.spage=191&rft.epage=200&rft.pages=191-200&rft.issn=8756-3282&rft.eissn=1873-2763&rft_id=info:doi/10.1016/j.bone.2014.01.009&rft_dat=%3Cproquest_pubme%3E1504152672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504152672&rft_id=info:pmid/24468719&rft_els_id=S8756328214000118&rfr_iscdi=true |